• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 20
  • 9
  • 3
  • 2
  • Tagged with
  • 83
  • 83
  • 47
  • 25
  • 18
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Impact of information fusion in complex decision making

Aziz, Tariq January 2011 (has links)
In military battlefield domain, decision making plays a very important part because safety and protection depends upon the accurate decisions made by the commanders in complex situations. In military and defense applications, there is a need of such technology that helps leaders to take good decisions in the critical situations with information overload. With the help of multi-sensor information fusion, the amount of information can be reduced as well as uncertainties in the information in the decision making of identifying and tracking targets in the military area.   Information fusion refers to the process of getting information from different sources and fusing this information, to supply an enhanced decision support. Decision making is the very core and a vital part in the field of information fusion and better decisions can be obtained by understanding how situation awareness can be enhanced. Situation awareness is about understanding the elements of the situation i.e. circumstances of the surrounding environment, their relations and their future impacts, for better decision making. Efficient situation awareness can be achieved with the effective use of the sensors. Sensors play a very useful role in the multi-sensor fusion technology to collect the data about, for instance, the enemy regarding their movements across the border and finding relationships between different objects in the battlefield that helps the decision makers to enhance situation awareness.   The purpose of this thesis is to understand and analyze the critical issue of uncertainties that results information in overload in military battlefield domain and benefits of using multi-sensor information fusion technology to reduce uncertainties by comparing uncertainty management methods of Bayesian and Dempster Shafer theories to enhance decision making and situation awareness for identifying the targets in battlefield domain.
62

Définition d'une fonction de pronostic des systèmes techniques multi composants prenant en compte les incertitudes à partir des pronostics de leurs composants / Definition of a generic prognostic function of technical multi-component systems taking into account the uncertainties of the predictions of their components

Le Maitre Gonzalez, Esteban Adolfo 24 January 2019 (has links)
Face au défi des entreprises pour le maintien de leurs équipements au maximum de leur fiabilité, de leur disponibilité, de leur rentabilité et de leur sécurité au coût de maintenance minimum, des stratégies de maintenance telles que le CBM et le PHM ont été développées. Pour mettre en œuvre ces stratégies, comme pour la planification des activités de production il est nécessaire de connaître l’aptitude des systèmes à réaliser les futures tâches afin de réaliser le séquencement des opérations de production et de maintenance. Cette thèse présente les éléments d'une fonction générique qui évalue la capacité des systèmes techniques multi-composants à exécuter les tâches de production de biens ou de services assignées. Ce manuscrit présente une proposition de modélisation de systèmes techniques multi-composants représentant les différentes entités qui les composent, leurs états et leurs relations. Plusieurs types d’entités ont été identifiés. Pour chacun d’eux, des inférences sont proposées pour définir à l’intérieur du système l’aptitude de l’entité à accomplir les futures tâches de production à partir des évaluations de son état présent et futur et des évaluations des états présents et futurs des autres entités avec lesquelles elle est en relation. Ces évaluations des états présents et futurs sont basées sur l’exploitation de pronostics locaux des composants. Ces pronostics sont des prévisions qui intrinsèquement comportent des incertitudes pouvant être aléatoires ou épistémiques. La fonction proposée et les inférences prennent en compte ces deux formes d’incertitudes. Pour cela, les traitements et la fonction proposée exploite des éléments de la théorie de Dempster-Shafer. La modélisation des systèmes multi-composants pouvant être représentée sous la forme de graphes dont les états des nœuds dépendent de données comportant des incertitudes, des éléments des réseaux bayésiens sont également utilisés. Cette fonction fournit des indicateurs, sur l’aptitude de chaque entité du système à accomplir les futures tâches de production mais aussi indique les composants nécessitant une intervention afin d’améliorer cette aptitude. Ainsi, ces indicateurs constituent les éléments d'aide à la décision pour la planification des opérations de maintenance de façon conditionnelle et préventive, mais aussi pour la planification des opérations de production. / One major challenge of companies consists in maintaining their technical production resources at the maximum level of reliability, availability, profitability and safety for a minimum maintenance cost, maintenance strategies such as CBM and PHM have been developed. To implement these strategies, as with production activity planning, it is necessary to know the ability of systems to perform future tasks to order production and maintenance operations. This thesis presents the generic function that evaluates the ability of multi-component technical systems to perform the production tasks of goods or services. This manuscript presents a proposal for the modelling of multi-component technical systems representing the different entities that compose them, their states and their relationships. Several types of entities have been identified. For each of them, inferences are proposed to define within the system the entity's ability to perform future production tasks based on its own assessment of its present and future state and the assessments of the present and future states of the other entities with which it is involved. These assessments of present and future states are based on the use of local prognoses of components. These prognoses are predictions that inherently involve uncertainties that may be aleatory or epistemic. The proposed function and inferences take into account these two kinds of uncertainty. To do this, the inferences and the proposed function uses elements of the Dempster-Shafer theory. Since the modelling of multi-component systems can be represented in the form of graphs whose node states depend on data with uncertainties, elements of Bayesian networks are also used. This function provides indicators on the ability of each system entity to perform future production tasks but also indicates the components that require maintenance to improve this ability. Thus, these indicators constitute the elements of decision support for the planning of maintenance operations in a conditional and preventive way, but also for the planning of production tasks.
63

Fusion of Soft and Hard Data for Event Prediction and State Estimation

Thirumalaisamy, Abirami 11 1900 (has links)
Social networking sites such as Twitter, Facebook and Flickr play an important role in disseminating breaking news about natural disasters, terrorist attacks and other events. They serve as sources of first-hand information to deliver instantaneous news to the masses, since millions of users visit these sites to post and read news items regularly. Hence, by exploring e fficient mathematical techniques like Dempster-Shafer theory and Modi ed Dempster's rule of combination, we can process large amounts of data from these sites to extract useful information in a timely manner. In surveillance related applications, the objective of processing voluminous social network data is to predict events like revolutions and terrorist attacks before they unfold. By fusing the soft and often unreliable data from these sites with hard and more reliable data from sensors like radar and the Automatic Identi cation System (AIS), we can improve our event prediction capability. In this paper, we present a class of algorithms to fuse hard sensor data with soft social network data (tweets) in an e ffective manner. Preliminary results using are also presented. / Thesis / Master of Applied Science (MASc)
64

A basic probability assignment methodology for unsupervised wireless intrusion detection

Ghafir, Ibrahim, Kyriakopoulos, K.G., Aparicio-Navarro, F.J., Lambotharan, S., Assadhan, B., Binsalleeh, A.H. 24 January 2020 (has links)
Yes / The broadcast nature of wireless local area networks has made them prone to several types of wireless injection attacks, such as Man-in-the-Middle (MitM) at the physical layer, deauthentication, and rogue access point attacks. The implementation of novel intrusion detection systems (IDSs) is fundamental to provide stronger protection against these wireless injection attacks. Since most attacks manifest themselves through different metrics, current IDSs should leverage a cross-layer approach to help toward improving the detection accuracy. The data fusion technique based on the Dempster–Shafer (D-S) theory has been proven to be an efficient technique to implement the cross-layer metric approach. However, the dynamic generation of the basic probability assignment (BPA) values used by D-S is still an open research problem. In this paper, we propose a novel unsupervised methodology to dynamically generate the BPA values, based on both the Gaussian and exponential probability density functions, the categorical probability mass function, and the local reachability density. Then, D-S is used to fuse the BPA values to classify whether the Wi-Fi frame is normal (i.e., non-malicious) or malicious. The proposed methodology provides 100% true positive rate (TPR) and 4.23% false positive rate (FPR) for the MitM attack and 100% TPR and 2.44% FPR for the deauthentication attack, which confirm the efficiency of the dynamic BPA generation methodology. / Gulf Science, Innovation and Knowledge Economy Programme of the U.K. Government under UK-Gulf Institutional Link Grant IL 279339985 and in part by the Engineering and Physical Sciences Research Council (EPSRC), U.K., under Grant EP/R006385/1.
65

Relating Dependent Terms in Information Retrieval

Shi, Lixin 11 1900 (has links)
Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). Certaines études ont proposé d’intégrer certains types de dépendance, tels que la proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la plupart des cas, les modèles de dépendance sont construits séparément et ensuite combinés avec le modèle traditionnel de mots avec une importance constante. Par conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thèse, nous étudions différentes approches pour capturer les relations des termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: ─ Nous réexaminons l'approche de combinaison en utilisant différentes unités d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. Plusieurs modèles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considérée comme représentant l'ensemble de tous les termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt qu’a chaque terme individuel. Au moment d’évaluation de requête, cette probabilité est redistribuée aux termes de la requête si ces derniers sont différents. Cette approche nous permet d'intégrer les relations de dépendance entre les termes. Nous proposons un modèle discriminant pour intégrer les différentes types de dépendance selon leur force et leur utilité pour la RI. Notamment, nous considérons la dépendance de contiguïté et de cooccurrence à de différentes distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants est déterminé selon un ensemble des caractères, en utilisant la régression SVM. Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et/ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des améliorations substantielles sur l'état de l'art. / Search engine has become an integral part of our life. More than one-third of world populations are Internet users. Most users turn to a search engine as the quick way to finding the information or product they want. Information retrieval (IR) is the foundation for modern search engines. Traditional information retrieval approaches assume that indexing terms are independent. However, terms occurring in the same context are often dependent. Failing to recognize the dependencies between terms leads to noise (irrelevant documents) in the result. Some studies have proposed to integrate term dependency of different types, such as proximity, co-occurrence, adjacency and grammatical dependency. In most cases, dependency models are constructed apart and then combined with the traditional word-based (unigram) model on a fixed importance proportion. Consequently, they cannot properly capture variable term dependency and its strength. For example, dependency between adjacent words “black Friday” is more important to consider than those of between “road constructions”. In this thesis, we try to study different approaches to capture term relationships and their dependency strengths. We propose the following methods for monolingual IR and Cross-Language IR (CLIR): We re-examine the combination approach by using different indexing units for Chinese monolingual IR, then propose the similar method for CLIR. In addition to the traditional method based on words, we investigate the possibility of using Chinese bigrams and unigrams as translation units. Several translation models from English words to Chinese unigrams, bigrams and words are created based on a parallel corpus. An English query is then translated in several ways, each producing a ranking score. The final ranking score combines all these types of translations. We incorporate dependencies between terms in our model using Dempster-Shafer theory of evidence. Every occurrence of a text fragment in a document is represented as a set which includes all its implied terms. Probability is assigned to such a set of terms instead of individual terms. During query evaluation phase, the probability of the set can be transferred to those of the related query, allowing us to integrate language-dependent relations to IR. We propose a discriminative language model that integrates different term dependencies according to their strength and usefulness to IR. We consider the dependency of adjacency and co-occurrence within different distances, i.e. bigrams, pairs of terms within text window of size 2, 4, 8 and 16. The weight of bigram or a pair of dependent terms in the final model is learnt according to a set of features. All the proposed methods are evaluated on several English and/or Chinese collections, and experimental results show these methods achieve substantial improvements over state-of-the-art baselines.
66

Raisonnement approximatif pour la détection et l'analyse de changements / Approximate reasoning for the detection and analysing of changes

Haouas, Fatma 25 September 2019 (has links)
Cette thèse est le fruit de l’interaction de deux disciplines qui sont la détection de changements dans des images multitemporelles et le raisonnement évidentiel à l’aide de la théorie de Dempster-Shafer (DST). Aborder le problème de détection et d’analyse de changements par la DST nécessite la détermination d’un cadre de discernement exhaustif et exclusif. Ce problème s’avère complexe en l’absence des informations a priori sur les images. Nous proposons dans ce travail de recherche un nouvel algorithme de clustering basé sur l’algorithme Fuzzy-C-Means (FCM) afin de définir les classes sémantiques existantes. L’idée de cet algorithme est la représentation de chaque classe par un nombre varié de centroïdes afin de garantir une meilleure caractérisation de classes. Afin d’assurer l’exhaustivité du cadre de discernement, un nouvel indice de validité de clustering permettant de déterminer le nombre optimal de classes sémantiques est proposé. La troisième contribution consiste à exploiter la position du pixel par rapport aux centroïdes des classes et les degrés d’appartenance afin de définir la distribution de masse qui représente les informations. La particularité de la distribution proposée est la génération d’un nombre réduit des éléments focaux et le respect des axiomes mathématiques en effectuant la transformation flou-masse. Nous avons souligné la capacité du conflit évidentiel à indiquer les transformations multi-temporelles. Nous avons porté notre raisonnement sur la décomposition du conflit global et l’estimation des conflits partiels entre les couples des éléments focaux pour mesurer le conflit causé par le changement. Cette stratégie permet d’identifier le couple de classes qui participent dans le changement. Pour quantifier ce conflit, nous avons proposé une nouvelle mesure de changement notée CM. Finalement, nous avons proposé un algorithme permettant de déduire la carte binaire de changements à partir de la carte de conflits partiels. / This thesis is the interaction result of two disciplines that are the change detection in multitemporal images and the evidential reasoning using the Dempster-Shafer theory (DST). Addressing the problem of change detection and analyzing by the DST, requires the determination of an exhaustive and exclusive frame of discernment. This issue is complex when images lake prior information. In this research work, we propose a new clustering algorithm based on the Fuzzy-C-Means (FCM) algorithm in order to define existing semantic classes. The idea of this algorithm is the representation of each class by a varied number of centroids in order to guarantee a better characterization of classes. To ensure the frame of discernment exhaustiveness, we proposed a new cluster validity index able to identify the optimal number of semantic classes. The third contribution is to exploit the position of the pixel in relation to class centroids and its membership distribution in order to define the mass distribution that represents information. The particularity of the proposed distribution, is the generation of a reduced set of focal elements and the respect of mathematical axioms when performing the fuzzy-mass transformation. We have emphasized the capacity of evidential conflict to indicate multi-temporal transformations. We reasoned on the decomposition of the global conflict and the estimation of the partial conflicts between the couples of focal elements to measure the conflict caused by the change. This strategy allows to identify the couple of classes that participate in the change. To quantify this conflict, we proposed a new measure of change noted CM. Finally, we proposed an algorithm to deduce the binary map of changes from the partial conflicts map.
67

Framework for ambient assistive living : handling dynamism and uncertainty in real time semantic services provisioning / Environnement logiciel pour l’assistance à l’autonomie à domicile : gestion de la dynamique et de l’incertitude pour la fourniture sémantique en temps réel de services d’assistance

Aloulou, Hamdi 25 June 2013 (has links)
L’hétérogénéité des environnements ainsi que la diversité des profils et des besoins des patients représentent des contraintes majeures qui remettent en question l’utilisation à grande échelle des systèmes d’assistance à l’autonomie à domicile (AAL). En effet, afin de répondre à l’évolution de l’état des patients et de leurs besoins humains, les environnements AAL sont en évolution continue par l’introduction ou la disparition de capteurs, de dispositifs d’interaction et de services d’assistance. Par conséquent, une plateforme générique et dynamique capable de s’adapter à différents environnements et d’intégrer de nouveaux capteurs, dispositifs d’interaction et services d’assistance est requise. La mise en œuvre d’un tel aspect dynamique peut produire une situation d’incertitude dérivée des problèmes techniques liés à la fiabilité des capteurs ou à des problèmes de réseau. Par conséquent, la notion d’incertitude doit être introduite dans la représentation de contexte et la prise de décision afin de faire face à ce problème. Au cours de cette thèse, j’ai développé une plateforme dynamique et extensible capable de s’adapter à différents environnements et aux besoins des patients. Ceci a été réalisé sur la base de l’approche Plug&Play sémantique que j’ai proposé. Afin de traiter le problème d’incertitude de l’information lié à des problèmes techniques, j’ai proposé une approche de mesure d’incertitude en utilisant les caractéristiques intrinsèques des capteurs et leurs comportements fonctionnels. J’ai aussi fourni un modèle de représentation sémantique et de raisonnement avec incertitude associé avec la théorie de Dempster-Shafer (DST) pour la prise de décision / The heterogeneity of the environments as well as the diversity of patients’ needs and profiles are major constraints that challenge the spread of ambient assistive living (AAL) systems. AAL environments are usually evolving by the introduction or the disappearance of sensors, devices and assistive services to respond to the evolution of patients’ conditions and human needs. Therefore, a generic framework that is able to adapt to such dynamic environments and to integrate new sensors, devices and assistive services at runtime is required. Implementing such a dynamic aspect may produce an uncertainty derived from technical problems related to sensors reliability or network problems. Therefore, a notion of uncertain should be introduced in context representation and decision making in order to deal with this problem. During this thesis, I have developed a dynamic and extendible framework able to adapt to different environments and patients’ needs. This was achieved based on my proposed approach of semantic Plug&Play mechanism. In order to handle the problem of uncertain information related to technical problems, I have proposed an approach for uncertainty measurement based on intrinsic characteristics of the sensors and their functional behaviors, then I have provided a model of semantic representation and reasoning under uncertainty coupled with the Dempster-Shafer Theory of evidence (DST) for decision making
68

Reconstruction et analyse de trajectoires 2D d'objets mobiles par modélisation Markovienne et la théorie de l'évidence à partir de séquences d'images monoculaires - Application à l'évaluation de situations potentiellement dangereuses aux passages à niveau / Reconstruction and analysis of moving objects trajectoiries from monocular images sequences, using Hidden Markov Model and Dempster-Shafer Theory-Application for evaluating dangerous situations in level crossings

Salmane, Houssam 09 July 2013 (has links)
Les travaux présentés dans ce mémoire s’inscrivent dans le cadre duprojet PANsafer (Vers un Passage A Niveau plus sûr), lauréat de l’appel ANR-VTT2008. Ce projet est labellisé par les deux pôles de compétitivité i-Trans et Véhiculedu Futur. Le travail de la thèse est mené conjointement par le laboratoire IRTESSETde l’UTBM et le laboratoire LEOST de l’IFSTTAR.L’objectif de cette thèse est de développer un système de perception permettantl’interprétation de scénarios dans l’environnement d’un passage à niveau. Il s’agitd’évaluer des situations potentiellement dangereuses par l’analyse spatio-temporelledes objets présents autour du passage à niveau.Pour atteindre cet objectif, le travail est décomposé en trois étapes principales. Lapremière étape est consacrée à la mise en place d’une architecture spatiale des capteursvidéo permettant de couvrir de manière optimale l’environnement du passageà niveau. Cette étape est mise en oeuvre dans le cadre du développement d’unsimulateur d’aide à la sécurité aux passages à niveau en utilisant un système deperception multi-vues. Dans ce cadre, nous avons proposé une méthode d’optimisationpermettant de déterminer automatiquement la position et l’orientation descaméras par rapport à l’environnement à percevoir.La deuxième étape consisteà développer une méthode robuste de suivi d’objets enmouvement à partir d’une séquence d’images. Dans un premier temps, nous avonsproposé une technique permettant la détection et la séparation des objets. Le processusde suivi est ensuite mis en oeuvre par le calcul et la rectification du flotoptique grâce respectivement à un modèle gaussien et un modèle de filtre de Kalman.La dernière étape est destinée à l’analyse des trajectoires 2D reconstruites parl’étape précédente pour l’interprétation de scénarios. Cette analyse commence parune modélisation markovienne des trajectoires 2D. Un système de décision à basede théorie de l’évidence est ensuite proposé pour l’évaluation de scénarios, aprèsavoir modélisé les sources de danger.L’approche proposée a été testée et évaluée avec des données issues de campagnesexpérimentales effectuées sur site réel d’un passage à niveau mis à disposition parRFF. / The main objective of this thesis is to develop a system for monitoringthe close environment of a level crossing. It aims to develop a perception systemallowing the detection and the evaluation of dangerous situations around a levelcrossing.To achieve this goal, the overall problem of this work has been broken down intothree main stages. In the first stage, we propose a method for optimizing automaticallythe location of video sensors in order to cover optimally a level crossingenvironment. This stage addresses the problem of cameras positioning and orientationin order to view optimally monitored scenes.The second stage aims to implement a method for objects tracking within a surveillancezone. It consists first on developing robust algorithms for detecting and separatingmoving objects around level crossing. The second part of this stage consistsin performing object tracking using a Gaussian propagation optical flow based modeland Kalman filtering.On the basis of the previous steps, the last stage is concerned to present a newmodel to evaluate and recognize potential dangerous situations in a level crossingenvironment. This danger evaluation method is built using Hidden Markov Modeland credibility model.Finally, synthetics and real data are used to test the effectiveness and the robustnessof the proposed algorithms and the whole approach by considering various scenarioswithin several situations.This work is developed within the framework of PANsafer project (Towards a saferlevel crossing), supported by the ANR-VTT program (2008) of the French NationalAgency of Research. This project is also labelled by Pôles de compétitivité "i-Trans"and "Véhicule du Futur". All the work, presented in this thesis, has been conductedjointly within IRTES-SET laboratory from UTBM and LEOST laboratory fromIFSTTAR.
69

Segmentation des images IRM multi-échos tridimensionnelles pour la détection des tumeurs cérébrales par la théorie de l'évidence

Capelle-Laizé, Anne-Sophie 03 December 2003 (has links) (PDF)
L'imagerie par résonance magnétique (IRM) est, aujourd'hui, un outil puissant permettant l'observation in vivo de l'anatomie cérébrale. Utilisée en routine clinique, la multiplicité des pondérations d'acquisition permet aux médecins d'accéder à une information riche, abondante, et donc particulièrement adaptée au diagnostic de tumeurs cérébrales.<br /> <br />Cette thèse porte sur la problématique de segmentation des images IRM cérébrales pour l'aide au diagnostic des tumeurs cérébrales. Il s'agit donc de développer des méthodes de segmentation précises et fiables permettant la localisation des tumeurs cérébrales, en particulier infiltrantes dont les frontières ne sont pas nettes.<br />L'approche de segmentation adoptée est une approche multi-échos - donc multi-sources - fondée sur la théorie de l'évidence (ou théorie de Dempster-Shafer) apte à gérer l'incertitude des données à traiter et l'aspect multi-sources des informations manipulées. Dans un premier temps, nous nous attachons à montrer l'aptitude de la théorie de l'évidence à traiter les informations imprécises et incertaines que sont les images IRM au travers d'une démarche de type reconnaissance des formes crédibiliste. Dans un second temps, nous proposons une méthode d'intégration d'informations contextuelles fondée sur une combinaison pondérée de fonctions de croyance. La méthode de segmentation ainsi définie est appliquée à différents volumes cérébraux permettant une détection des zones tumorales. Des comparaisons avec des segmentations menées par des experts cliniciens et des méthodes de la littérature montrent l'intérêt des outils méthodologiques proposés à définir les volumes tumoraux recherchés. Enfin, nous nous sommes intéressées au conflit généré par le processus d'intégration des informations contextuelles. Nous montrons que le conflit est une information à part entière, représentative de la position des frontières entre les différentes structures anatomiques de la scène observée (le cerveau). Cette information frontière peut être utilisée en coopération avec la segmentation région initialement obtenue permettant ainsi d'obtenir un processus de segmentation complet reposant sur une approche de type "régions" et une approche de type "contours"
70

Task-Driven Integrity Assessment and Control for Vehicular Hybrid Localization Systems

Drawil, Nabil 17 January 2013 (has links)
Throughout the last decade, vehicle localization has been attracting significant attention in a wide range of applications, including Navigation Systems, Road Tolling, Smart Parking, and Collision Avoidance. To deliver on their requirements, these applications need specific localization accuracy. However, current localization techniques lack the required accuracy, especially for mission critical applications. Although various approaches for improving localization accuracy have been reported in the literature, there is still a need for more efficient and more effective measures that can ascribe some level of accuracy to the localization process. These measures will enable localization systems to manage the localization process and resources so as to achieve the highest accuracy possible, and to mitigate the impact of inadequate accuracy on the target application. In this thesis, a framework for fusing different localization techniques is introduced in order to estimate the location of a vehicle along with location integrity assessment that captures the impact of the measurement conditions on the localization quality. Knowledge about estimate integrity allows the system to plan the use of its localization resources so as to match the target accuracy of the application. The framework introduced provides the tools that would allow for modeling the impact of the operation conditions on estimate accuracy and integrity, as such it enables more robust system performance in three steps. First, localization system parameters are utilized to contrive a feature space that constitutes probable accuracy classes. Due to the strong overlap among accuracy classes in the feature space, a hierarchical classification strategy is developed to address the class ambiguity problem via the class unfolding approach (HCCU). HCCU strategy is proven to be superior with respect to other hierarchical configuration. Furthermore, a Context Based Accuracy Classification (CBAC) algorithm is introduced to enhance the performance of the classification process. In this algorithm, knowledge about the surrounding environment is utilized to optimize classification performance as a function of the observation conditions. Second, a task-driven integrity (TDI) model is developed to enable the applications modules to be aware of the trust level of the localization output. Typically, this trust level functions in the measurement conditions; therefore, the TDI model monitors specific parameter(s) in the localization technique and, accordingly, infers the impact of the change in the environmental conditions on the quality of the localization process. A generalized TDI solution is also introduced to handle the cases where sufficient information about the sensing parameters is unavailable. Finally, the produce of the employed localization techniques (i.e., location estimates, accuracy, and integrity level assessment) needs to be fused. Nevertheless, these techniques are hybrid and their pieces of information are conflicting in many situations. Therefore, a novel evidence structure model called Spatial Evidence Structure Model (SESM) is developed and used in constructing a frame of discernment comprising discretized spatial data. SESM-based fusion paradigms are capable of performing a fusion process using the information provided by the techniques employed. Both the location estimate accuracy and aggregated integrity resultant from the fusion process demonstrate superiority over the employing localization techniques. Furthermore, a context aware task-driven resource allocation mechanism is developed to manage the fusion process. The main objective of this mechanism is to optimize the usage of system resources and achieve a task-driven performance. Extensive experimental work is conducted on real-life and simulated data to validate models developed in this thesis. It is evident from the experimental results that task-driven integrity assessment and control is applicable and effective on hybrid localization systems.

Page generated in 0.077 seconds