Spelling suggestions: "subject:"denial off service"" "subject:"denial oof service""
111 |
Security Analysis of OPC UA in Automation Systems for IIoT / Säkerhetsanalys av OPC UA inom automationssystem för IIoT.Varadarajan, Vaishnavi January 2022 (has links)
Establishing secured communication among the different entities in an industrial environment is a major concern. Especially with the introduction of the Industrial Internet of Things (IIoT), industries have been susceptible to cyber threats, which makes security a critical requirement for the industries. Prevailing industrial communication standards were proven to meet the security needs to some extent, but the major issue which was yet to be addressed was interoperability. To achieve interoperability, Open Platform Communication Unified Architecture (OPC UA) was introduced as a communication protocol. OPC UA helped bridge the gap between Information Technology (IT) and Operational Technology (OT) security needs, but this also gives rise to new attack opportunities for the intruder. In this thesis, we have analysed the security challenges in OPC UA and the impact of two different cyberattacks on the OPCUA. First, we have implemented an OPC UA Network with the help of Raspberry Pis and open62541, an open-source implementation of the OPC UA client and server. Following this, to evaluate the performance of the network, we performed three cybersecurity attacks, Packet Sniffing, Man in the Middle Attack (MITM) and Denial of Service attack. We assessed the impact these attacks have on the OPC UA network. We have also discussed the detection mechanism for the same attacks. This analysis has helped us recognize the threats faced by OPC UA in an IIoT environment with respect to message flooding, packet sniffing and man in the middle attack and the countermeasures to this attack have been discussed. / Att etablera en säker kommunikation mellan de olika enheterna i en industriell miljö är en stor utmaning. Speciellt efter introduktionen av Industrial Internet of Things (IIoT) har industrier varit mottagliga för cyberhot vilket gör cybersäkerhet en prioritet. Rådande industriella kommunikationsstandarder har visats att till viss del uppfylla säkerhets- behoven, men en av de största problemen var bristen på interoperabilitet. För att uppnå interoperabiliteten skapades Open Platform Communication Unified Architecture (OPC UA) som kommun- ikationsprotokoll. OPC UA hjälper till att överbrygga gapet mellan säkerhetsbehoven av information- steknologi (IT) och Operational Technology (OT), men detta ger också upphov till nya attackmöjligheter för inkräktare. I detta examensarbete har vi analyserat säkerhetsutmaningarna i OPC UA och effekten av två olika cyberattacker på OPC UA. Först har vi implementerat ett OPC UA Network med hjälp av Raspberry Pis och open62541 som är en öppen källkodsimplementering av OPC UA klient och server. Efter detta utförde vi tre cybersäkerhetsattacker för att utvärdera nätverkets prestanda, packet sniffing, Man in the Middle Attack (MITM) och Denial of Service attack. Vi bedömde vilken effekt dessa attacker har på OPC UA-nätverket. Vi har också diskuterat detektionsmekanismen för samma attacker. Denna analys har hjälpt oss att känna igen de hot som OPC UA står inför i en IIoT-miljö med avseende på dataflöde, packet sniffing och Man in the Middle attack och även försvar mot dessa attacker har diskuterats.
|
112 |
Improved performance high speed network intrusion detection systems (NIDS) : a high speed NIDS architectures to address limitations of packet loss and low detection rate by adoption of dynamic cluster architecture and traffic anomaly filtration (IADF)Akhlaq, Monis January 2011 (has links)
Intrusion Detection Systems (IDS) are considered as a vital component in network security architecture. The system allows the administrator to detect unauthorized use of, or attack upon a computer, network or telecommunication infrastructure. There is no second thought on the necessity of these systems however; their performance remains a critical question. This research has focussed on designing a high performance Network Intrusion Detection Systems (NIDS) model. The work begins with the evaluation of Snort, an open source NIDS considered as a de-facto IDS standard. The motive behind the evaluation strategy is to analyze the performance of Snort and ascertain the causes of limited performance. Design and implementation of high performance techniques are considered as the final objective of this research. Snort has been evaluated on highly sophisticated test bench by employing evasive and avoidance strategies to simulate real-life normal and attack-like traffic. The test-methodology is based on the concept of stressing the system and degrading its performance in terms of its packet handling capacity. This has been achieved by normal traffic generation; fussing; traffic saturation; parallel dissimilar attacks; manipulation of background traffic, e.g. fragmentation, packet sequence disturbance and illegal packet insertion. The evaluation phase has lead us to two high performance designs, first distributed hardware architecture using cluster-based adoption and second cascaded phenomena of anomaly-based filtration and signature-based detection. The first high performance mechanism is based on Dynamic Cluster adoption using refined policy routing and Comparator Logic. The design is a two tier mechanism where front end of the cluster is the load-balancer which distributes traffic on pre-defined policy routing ensuring maximum utilization of cluster resources. The traffic load sharing mechanism reduces the packet drop by exchanging state information between load-balancer and cluster nodes and implementing switchovers between nodes in case the traffic exceeds pre-defined threshold limit. Finally, the recovery evaluation concept using Comparator Logic also enhance the overall efficiency by recovering lost data in switchovers, the retrieved data is than analyzed by the recovery NIDS to identify any leftover threats. Intelligent Anomaly Detection Filtration (IADF) using cascaded architecture of anomaly-based filtration and signature-based detection process is the second high performance design. The IADF design is used to preserve resources of NIDS by eliminating large portion of the traffic on well defined logics. In addition, the filtration concept augment the detection process by eliminating the part of malicious traffic which otherwise can go undetected by most of signature-based mechanisms. We have evaluated the mechanism to detect Denial of Service (DoS) and Probe attempts based by analyzing its performance on Defence Advanced Research Projects Agency (DARPA) dataset. The concept has also been supported by time-based normalized sampling mechanisms to incorporate normal traffic variations to reduce false alarms. Finally, we have observed that the IADF has augmented the overall detection process by reducing false alarms, increasing detection rate and incurring lesser data loss.
|
113 |
PACKET FILTER APPROACH TO DETECT DENIAL OF SERVICE ATTACKSMuharish, Essa Yahya M 01 June 2016 (has links)
Denial of service attacks (DoS) are a common threat to many online services. These attacks aim to overcome the availability of an online service with massive traffic from multiple sources. By spoofing legitimate users, an attacker floods a target system with a high quantity of packets or connections to crash its network resources, bandwidth, equipment, or servers. Packet filtering methods are the most known way to prevent these attacks via identifying and blocking the spoofed attack from reaching its target. In this project, the extent of the DoS attacks problem and attempts to prevent it are explored. The attacks categories and existing countermeasures based on preventing, detecting, and responding are reviewed. Henceforward, a neural network learning algorithms and statistical analysis are utilized into the designing of our proposed packet filtering system.
|
114 |
Αναγνώριση επιθέσεων άρνησης εξυπηρέτησηςΓαβρίλης, Δημήτρης 15 February 2008 (has links)
Στη Διδακτορική Διατριβή μελετώνται 3 κατηγορίες επιθέσεων άρνησης εξυπηρέτησης (Denial-of-Service). Η πρώτη κατηγορία αφορά επιθέσεις τύπου SYN Flood, μια επίθεση που πραγματοποιείται σε χαμηλό επίπεδο και αποτελεί την πιο διαδεδομένη ίσως κατηγορία. Για την αναγνώριση των επιθέσεων αυτών εξήχθησαν 9 στατιστικές παράμετροι οι οποίες τροφοδότησαν τους εξής ταξινομητές: ένα νευρωνικό δίκτυο ακτινικών συναρτήσεων, ένα ταξινομητή κ-κοντινότερων γειτόνων και ένα εξελικτικό νευρωνικό δίκτυο. Ιδιαίτερη σημασία στο σύστημα αναγνώρισης έχουν οι παράμετροι που χρησιμοποιήθηκαν. Για την κατασκευή και επιλογή των παραμέτρων αυτών, προτάθηκε μια νέα τεχνική η οποία χρησιμοποιεί ένα γενετικό αλγόριθμο και μια γραμματική ελεύθερης σύνταξης για να κατασκευάζει νέα σύνολα παραμέτρων από υπάρχοντα σύνολα πρωτογενών χαρακτηριστικών. Στη δεύτερη κατηγορία επιθέσεων, μελετήθηκαν επιθέσεις άρνησης εξυπηρέτησης στην υπηρεσία του παγκόσμιου ιστού (www). Για την αντιμετώπιση των επιθέσεων αυτών προτάθηκε η χρήση υπερσυνδέσμων-παγίδων οι οποίοι τοποθετούνται στον ιστοχώρο και λειτουργούν σαν νάρκες σε ναρκοπέδιο. Οι υπερσύνδεσμοι-παγίδες δεν περιέχουν καμία σημασιολογική πληροφορία και άρα είναι αόρατοι στους πραγματικούς χρήστες ενώ είναι ορατοί στις μηχανές που πραγματοποιούν τις επιθέσεις. Στην τελευταία κατηγορία επιθέσεων, τα μηνύματα ηλεκτρονικού ταχυδρομείου spam, προτάθηκε μια μέθοδος κατασκευής ενός πολύ μικρού αριθμού παραμέτρων και χρησιμοποιήθηκαν για πρώτη φορά νευρωνικά δίκτυα για την αναγνώριση τους. / The dissertation analyzes 3 categories of denial-of-service attacks. The first category concerns SYN Flood attacks, a low level attack which is the most common. For the detection of this type of attacks 9 features were proposed which acted as inputs for the following classifiers: a radial basis function neural network, a k-nearest neighbor classifier and an evolutionary neural network. A crucial part of the proposed system is the parameters that act as inputs for the classifiers. For the selection and construction of those features a new method was proposed that automatically selects constructs new feature sets from a predefined set of primitive characteristics. This new method uses a genetic algorithm and a context-free grammar in order to find the optimal feature set. In the second category, denial-of-service attacks on the World Wide Web service were studied. For the detection of those attacks, the use of decoy-hyperlinks was proposed. Decoy hyperlinks, are hyperlinks that contain no semantic information and thus are invisible to normal users but are transparent to the programs that perform the attacks. The decoys act like mines on a minefield and are placed optimally on the web site so that the detection probability is maximized. In the last type of attack, the email spam problem, a new method was proposed for the construction of a very small number of features which are used to feed a neural network that for the first time is used to detect such attacks.
|
115 |
Uma arquitetura para a detecção de intrusos no ambiente wireless usando redes neurais artificiais / An architecture for detecting intruders in the Wireless environment using artificial neural networksATAÍDE, Ricardo Luis da Rocha 27 December 2007 (has links)
Made available in DSpace on 2016-08-17T14:52:37Z (GMT). No. of bitstreams: 1
Ricardo Luis da Rocha Ataide.pdf: 1712992 bytes, checksum: 27d451c245e151370c1c17a8e89cf8bb (MD5)
Previous issue date: 2007-12-27 / Most of the existing software of wireless intrusion detection identify behaviors
obtrusive only taking as a basis the exploitation of known vulnerabilities
commonly called of attack signatures. They analyze the activity of the system,
watching sets of events that are similar to a pre-determined pattern that describes
an intrusion known. Thus, only known vulnerabilities are detected, leading to
the need for new techniques for detecting intrusions be constantly added to the
system. It is necessary to implement a wireless IDS that can identify intrusive
behaviors also based on the observation of the deflection normal behaviour of the
users, hosts or network connections. This normal behaviour should be based on
historical data, collected over a long period of normal operation. This present
work proposes an architecture for a system to intrusion detection in wireless networks
by anomalies, which is based on the application of technology to artificial
neural networks, both in the processes of intrusion detection, as making countermeasures.
The system can be adapted to the profile of a new community of
users, and can recognize attacks with characteristics somewhat different from the
already known by the system, relying only on deviations in behaviour of this new
community. A prototype has been implemented and various simulations and tests
were performed on it, with three denial of service attacks. The tests were to verify
the effectiveness of the application of neural networks in the solution of the
problem of wireless network intrusion detection, and concentrated its focus on
the power of generalization of neural networks. This ensures the system detects
attacks though these features slightly different from those already known. / A maioria dos sistemas de detecção de intrusos para redes wireless existentes
identificam comportamentos intrusivos apenas tomando como base a exploração
de vulnerabilidades conhecidas, comumente chamadas de assinaturas de ataques.
Eles analisam a atividade do sistema, observando conjuntos de eventos que sejam
semelhantes a um padrão pré-determinado que descreva uma intrusão conhecida.
Com isso, apenas vulnerabilidades conhecidas são detectadas, trazendo a necessidade
de que novas técnicas de intrusão sejam constantemente adicionadas ao
sistema. Torna-se necessária a implementação de um WIDS (Wireless Intrusion
Detection System) que possa identificar comportamentos intrusivos baseandose
também na observação de desvios do comportamento normal dos usuários,
computadores pessoais ou conexões da rede. Esse comportamento normal deve
se basear em dados históricos, coletados durante um longo período normal de
operação. Este trabalho propõe uma arquitetura para um sistema de detecção
de intrusos em redes wireless por anomalias, que tem como base a aplicação da
tecnologia de redes neurais artificiais, tanto nos processos de detecção de intrusões
quanto de tomada de contramedidas. O sistema pode se adaptar ao perfil de uma
nova comunidade de usuários, bem como pode reconhecer ataques com características um pouco diferentes das já conhecidas pelo sistema, baseando-se apenas
nos desvios de comportamento dessa nova comunidade. Um protótipo foi implementado
e várias simulações e testes desse protótipo foram realizadas, para três
ataques de negação de serviço. Os testes tiveram o objetivo de verificar a eficácia
da aplicacação de redes neurais na solução do problema da detecção de intrusos
em redes wireless, concentrando seu foco no poder de generalização das redes
neurais. Isto garante que o sistema detecte ataques ainda que estes apresentem
características ligeiramente diferentes das já conhecidas.
Redes Neurais Artificiais.
|
116 |
Misbehaviors detection schemes in mobile ad hoc networks / Une approche décentralisée pour la détection de comportements malveillants dans les réseaux MANETsRmayti, Mohammad 30 September 2016 (has links)
Avec l’évolution des besoins d’utilisateurs, plusieurs technologies de réseaux sans fil ont été développées. Parmi ces technologies, nous trouvons les réseaux mobiles ad hoc (MANETs) qui ont été conçus pour assurer la communication dans le cas où le déploiement d’une infrastructure réseaux est coûteux ou inapproprié. Dans ces réseaux, le routage est une fonction primordiale où chaque entité mobile joue le rôle d’un routeur et participe activement dans le routage. Cependant, les protocoles de routage ad hoc tel qu’ils sont conçus manquent de contrôle de sécurité. Sur un chemin emprunté, un nœud malveillant peut violemment perturber le routage en bloquant le trafic. Dans cette thèse, nous proposons une solution de détection des nœuds malveillants dans un réseau MANET basée sur l’analyse comportementale à travers les filtres bayésiens et les chaînes de Markov. L’idée de notre solution est d’évaluer le comportement d’un nœud en fonction de ses échanges avec ses voisins d’une manière complètement décentralisée. Par ailleurs, un modèle stochastique est utilisé afin de prédire la nature de comportement d’un nœud et vérifier sa fiabilité avant d’emprunter un chemin. Notre solution a été validée via de nombreuses simulations sur le simulateur NS-2. Les résultats montrent que la solution proposée permet de détecter avec précision les nœuds malveillants et d’améliorer la qualité de services de réseaux MANETs / With the evolution of user requirements, many network technologies have been developed. Among these technologies, we find mobile ad hoc networks (MANETs) that were designed to ensure communication in situations where the deployment of a network infrastructure is expensive or inappropriate. In this type of networks, routing is an important function where each mobile entity acts as a router and actively participates in routing services. However, routing protocols are not designed with security in mind and often are very vulnerable to node misbehavior. A malicious node included in a route between communicating nodes may severely disrupt the routing services and block the network traffic. In this thesis, we propose a solution for detecting malicious nodes in MANETs through a behavior-based analysis and using Bayesian filters and Markov chains. The core idea of our solution is to evaluate the behavior of a node based on its interaction with its neighbors using a completely decentralized scheme. Moreover, a stochastic model is used to predict the nature of behavior of a node and verify its reliability prior to selecting a path. Our solution has been validated through extensive simulations using the NS-2 simulator. The results show that the proposed solution ensures an accurate detection of malicious nodes and improve the quality of routing services in MANETs
|
117 |
Information-Theoretic Framework for Network Anomaly Detection: Enabling online application of statistical learning models to high-speed traffic / ITF-NAD : Ett informationsteoretiskt ramverk för realtidsdetektering av nätverksanomalierDamour, Gabriel January 2019 (has links)
With the current proliferation of cyber attacks, safeguarding internet facing assets from network intrusions, is becoming a vital task in our increasingly digitalised economies. Although recent successes of machine learning (ML) models bode the dawn of a new generation of intrusion detection systems (IDS); current solutions struggle to implement these in an efficient manner, leaving many IDSs to rely on rule-based techniques. In this paper we begin by reviewing the different approaches to feature construction and attack source identification employed in such applications. We refer to these steps as the framework within which models are implemented, and use it as a prism through which we can identify the challenges different solutions face, when applied in modern network traffic conditions. Specifically, we discuss how the most popular framework -- the so called flow-based approach -- suffers from significant overhead being introduced by its resource heavy pre-processing step. To address these issues, we propose the Information Theoretic Framework for Network Anomaly Detection (ITF-NAD); whose purpose is to facilitate online application of statistical learning models onto high-speed network links, as well as provide a method of identifying the sources of traffic anomalies. Its development was inspired by previous work on information theoretic-based anomaly and outlier detection, and employs modern techniques of entropy estimation over data streams. Furthermore, a case study of the framework's detection performance over 5 different types of Denial of Service (DoS) attacks is undertaken, in order to illustrate its potential use for intrusion detection and mitigation. The case study resulted in state-of-the-art performance for time-anomaly detection of single source as well as distributed attacks, and show promising results regarding its ability to identify underlying sources. / I takt med att antalet cyberattacker växer snabbt blir det alltmer viktigt för våra digitaliserade ekonomier att skydda uppkopplade verksamheter från nätverksintrång. Maskininlärning (ML) porträtteras som ett kraftfullt alternativ till konventionella regelbaserade lösningar och dess anmärkningsvärda framgångar bådar för en ny generation detekteringssytem mot intrång (IDS). Trots denna utveckling, bygger många IDS:er fortfarande på signaturbaserade metoder, vilket förklaras av de stora svagheter som präglar många ML-baserade lösningar. I detta arbete utgår vi från en granskning av nuvarande forskning kring tillämpningen av ML för intrångsdetektering, med fokus på de nödvändiga steg som omger modellernas implementation inom IDS. Genom att sätta upp ett ramverk för hur variabler konstrueras och identifiering av attackkällor (ASI) utförs i olika lösningar, kan vi identifiera de flaskhalsar och begränsningar som förhindrar deras praktiska implementation. Särskild vikt läggs vid analysen av de populära flödesbaserade modellerna, vars resurskrävande bearbetning av rådata leder till signifikant tidsfördröjning, vilket omöjliggör deras användning i realtidssystem. För att bemöta dessa svagheter föreslår vi ett nytt ramverk -- det informationsteoretiska ramverket för detektering av nätverksanomalier (ITF-NAD) -- vars syfte är att möjliggöra direktanslutning av ML-modeller över nätverkslänkar med höghastighetstrafik, samt tillhandahåller en metod för identifiering av de bakomliggande källorna till attacken. Ramverket bygger på modern entropiestimeringsteknik, designad för att tillämpas över dataströmmar, samt en ASI-metod inspirerad av entropibaserad detektering av avvikande punkter i kategoriska rum. Utöver detta presenteras en studie av ramverkets prestanda över verklig internettrafik, vilken innehåller 5 olika typer av överbelastningsattacker (DoS) genererad från populära DDoS-verktyg, vilket i sin tur illustrerar ramverkets användning med en enkel semi-övervakad ML-modell. Resultaten visar på hög nivå av noggrannhet för detektion av samtliga attacktyper samt lovande prestanda gällande ramverkets förmåga att identifiera de bakomliggande aktörerna.
|
118 |
Students’ Perception of Cyber Threat Severity : Investigating Alignment with Actual Risk LevelsErfani Torbaghani, Ramtin January 2023 (has links)
This study aims to investigate the alignment between students’ perception of cyber threats and their actual risk levels. A mixed-method approach was used, where data was collected from Swedish university students through questionnaires, capturing their perception, familiarity, experience, and protective behaviors. Information regarding the actual risk levels of cyber attacks was obtained from interviews with cyber security professionals and other expert sources, such as cyber security reports. The results showed that students perceive malware, ransomware, phishing, and insecure passwords as the most dangerous threats to society, while denial of service (DoS) attacks and packet sniffing were considered less severe. These findings align somewhat with the suggested threat levels. However, notable proportions of students perceived these threats as moderately dangerous or less severe, suggesting room for improvement in their understanding. The results also showed that protective behaviors among students are generally low, particularly in regards to IoT security. Future work should therefore explore the public’s perception, protective behavior and knowledge of IoT security, but also attacks that are common against such devices. / Denna studie jämför universitetsstudenters uppfattning om hur farliga olika cyberhot är med de faktiska risknivåerna för dessa hot. Data på studenternas uppfattning, bekantskap, erfarenhet och beteenden samlades in genom frågeformulär, medans information om cyberhotens faktiska risknivåer inhämtades från intervjuer med cybersäkerhetsproffs och andra experskällor som cybersäkerhetsrapporter och artiklar. Resultaten visade att studenterna uppfattar malware, ransomware, phishing och osäkra lösenord som de farligaste hoten mot samhället, medan denial of service (DoS)-attacker och packet sniffing ansågs vara mindre allvarliga. Dessa fynd överensstämde något med de föreslagna risknivåerna. Dock ansåg en anmärkningsvärd andel av studenterna dessa hot som måttligt farliga eller mindre allvarliga, vilket tyder på utrymme för förbättringar i deras förståelse. Resultaten visade också att skyddande beteenden bland studenter generellt är låga, särskilt när det gäller IoT-säkerhet. Framtida studier bör därför utforska allmänhetens uppfattning, skyddsbeteende och kunskap om IoT-säkerhet, men även attacker som är vanliga mot sådana enheter.
|
119 |
Cyber crime: a comparative law analysisMaat, Sandra Mariana 11 1900 (has links)
The Electronic Communications and Transactions Act, 25 of 2002, eradicated various lacunae that previously existed in respect of cyber crimes. Cyber crimes such as inter alia hacking, rogue code, unauthorised modification of data and denial of service attacks have now been criminalised. Specific criminal provisions in relation to spamming, computer-related fraud and extortion have also been included in the Act. It is argued that theft of incorporeal items such as information has already been recognised in our law, but has not been taken to its logical conclusion in our case law. However, there are instances where neither the common law nor our statutory provisions are applicable and where there is still a need for legislative intervention. The Act sufficiently deals with jurisdiction, the admissibility of data messages, the admissibility of electronic signatures and the regulation of cryptography. Cyber inspectors are a new addition to law enforcement. / Jurisprudence / L. L. M.
|
120 |
Advancing cyber security with a semantic path merger packet classification algorithmThames, John Lane 30 October 2012 (has links)
This dissertation investigates and introduces novel algorithms, theories, and supporting frameworks to significantly improve the growing problem of Internet security. A distributed firewall and active response architecture is introduced that enables any device within a cyber environment to participate in the active discovery and response of cyber attacks. A theory of semantic association systems is developed for the general problem of knowledge discovery in data. The theory of semantic association systems forms the basis of a novel semantic path merger packet classification algorithm. The theoretical aspects of the semantic path merger packet classification algorithm are investigated, and the algorithm's hardware-based implementation is evaluated along with comparative analysis versus content addressable memory. Experimental results show that the hardware implementation of the semantic path merger algorithm significantly outperforms content addressable memory in terms of energy consumption and operational timing.
|
Page generated in 0.0847 seconds