• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 129
  • 35
  • 18
  • 14
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 538
  • 196
  • 148
  • 121
  • 93
  • 83
  • 77
  • 66
  • 66
  • 64
  • 58
  • 55
  • 52
  • 48
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Denitrification potentials in soils underlying a riparian forest and an agricultural field in the coastal plain of Virginia

Smedley, Scott Brian 24 January 2009 (has links)
While research has shown that riparian forests are effective in reducing shallow groundwater nitrogen levels, the relative importance of the mechanisms responsible for this reduction have not been adequately addressed. This project focused on the microbial mediated process denitrification, which has been hypothesized to be a major factor responsible for decreased groundwater nitrate levels observed in forested regions. The study site was located on Virginia’s Eastern Shore and incorporated a transect extending from a field under agricultural use through a mesic forest to a distance of 91.4 meters. Groundwater flowed from a well drained agricultural field of Bojac sandy loam (coarse-loamy, mixed, thermic Typic Hapludults) and Munden sandy loam (coarse-loamy, mixed, thermic Aquic Hapludults) to a poorly drained forest soil, Nimmo sandy loam (coarse-loamy, mixed, Typic Ochraquults). Previous work along this transect reported mean nitrate (NO₃-N) levels of 1,161 ± 393 μmol·liter⁻¹ for shallow groundwater underlying the agricultural field, whereas shallow groundwater 91.4 meters into the forest had a mean concentration of 2.2 ± 2.6 μmol·liter⁻¹. Groundwater nitrate (NO₃-N) levels below ~3 meters of the water table 91.4 meters into the forest 559.5 ± 101.9 increased to approximately 250 μmol·liter⁻¹. In addition to nitrate levels, other water quality parameters and soil characteristics suggested that vertical variations of soil environments existed and therefore, must be incorporated into experimental design. Denitrification activiy was measured at various depth increments in the agricultural field and forest using an acetylene blockage technique. In addition, denitrification activity was measured after subjecting the soils to carbon and nitrate amendments. Denitrification activity from the forest was limited by nitrate at the water table and were carbon limited as vertical depth increased. Denitrification activity measured with nitrate amendments at the water table in the forest were two orders of magnitude higher than those in the field (7.37 nmol·g⁻¹·hr⁻¹ vs 0.074 nmol·g⁻¹·hr⁻¹). Dentrification activity measured with nitrate ± glucose amendments were higher at the water table in the forest, 6.88 nmol·g⁻¹·hr⁻¹, as compared to the field, 0.15 nmol·g⁻¹·hr⁻¹. Denitrifier microbial densities were measured at various vertical depths in the forest and agricultural field. Results demonstrated that denitrifiers densities at the water table in the forest were greater than those at the water table in the field. The number of denitrifying organisms per cubic centimeter of soil at the water table in the field averaged 2850 ± 1553(SD) as compared to 14,350 ± 13,369(SD) at the water table in the forest. At 0.91 meters below the water table in the field and in the forest the number of denitrifying organisms per cubic centimeter of soil were 1343 ± 1086(SD) and 3922 ± 3919(SD), respectively. The differences in denitrification measurements were due to location of the water table. The water table in the forest was located in the A horizon as compared to the water table in the field which was located in the C horizon. Results demonstrated that denitrification was an active mechanism that affected nitrate reduction in shallow groundwater in this system. Thus, riparian vegetation can be quite beneficial in reducing shallow groundwater nitrogen levels through microbially mediated processes such as denitrification. As a result nonpoint source nitrogen loadings from groundwater discharge can be reduced. / Master of Science
322

Nitrification and denitrification: biological nitrogen removal and sludge generation at the York River treatment plant

Mosca, Denise Michele 10 January 2009 (has links)
Data from Hampton Roads Sanitation District was used to calculate nitrification and denitrification rates for the A²/O mode (1987) and the VIP mode (1988) of operation. Nitrification and denitrification rates compared to literature values for similar sludge ages. The mean VIP nitrification rate was eight percent less compared to the A²/O mode. Denitrification varied with the amount of nitrate loading to the anoxic zone and the rate of total nitrate recycle. The amount of denitrification that occurred in each zone during the different operations was determined. Process mode variations caused different percentages in each zone. Anaerobic and anoxic denitrification was a linear function of the mass of nitrate recycled to the anoxic zone. Fifty to seventy-five percent of the denitrification took place in the aerobic basin during both process modes, but more aerobic denitrification occurred for the A²/O operation. Secondary clarifier nitrate varied inversely with the nitrate recycle similarly for both process modes. The differences in sludge production between the VIP and A²/O process could be explained by the differences in mean cell residence time. / Master of Science
323

Evaluating the Fate of Manure Nitrogen in Confined Dairy Waste Operations: a Full-Scale Waste Analysis and Start-Up Protocol for an Anammox-Based Treatment Technology Applicable to Dairy Waste Management

Sweetman, Paul J. 25 February 2005 (has links)
In an effort to develop cost-effective technologies for the removal of ammonium nitrogen from dairy waste, a novel biological wastewater treatment process, utilizing anaerobic ammonium oxidation (anammox), referred to as Oxygen-Limited Autotrophic Nitrification and Denitrification (OLAND) was examined. Due to the potential use of OLAND-based systems in dairy manure management, a detailed water quality assessment of a modern dairy farm manure treatment-system was conducted. The Johnson Highland Dairy Farm, Glade Spring, Virginia, was selected for this assessment and a comprehensive analysis of the wastewater characteristics throughout the confined animal feeding operation was completed. The results suggest that ammonia concentrations in the anaerobic storage facility was high enough to justify use of treatment technologies that reduce ammonia loads in stored dairy waste. A lightly loaded Fixed Film Bioreactor (FFBR), in which the OLAND process was desired to occur, was then constructed in the laboratory and monitored over 51 days. Of particular interest was the time taken to achieve stable performance of this OLAND system. Furthermore, a protocol was developed to determine whether OLAND based metabolism was occurring. Ammonium nitrogen removal efficiency in the FFBR throughout the 51-day monitoring period was high, averaging approximately 95 % for the length of the study. From day 32 to 51, simultaneous removal of both ammonium and nitrite with a low level of concomitant nitrate production was observed, a key indicator of possible anammox activity. Stoichiometric ratios calculated for the FFBR compared favorably with those already established for OLAND systems. The developed protocol, incorporating anaerobic and aerobic batch experiments, to verify the occurrence of OLAND based metabolism did not yield expected results and described poorly what was being observed in the FFBR. Volatilization of ammonia during the experimental test was suspected and should be controlled when the protocol is performed in the future. / Master of Science
324

Kartläggning av organiska restprodukter som näringskälla för denitrifierande bakterier i vattenreningssystem / Mapping organic residues as a nutrient source for denitrifying bacteria in water treatment systems

Hedberg, Matilda January 2024 (has links)
Studien undersöker hur organiska restprodukter kan användas som kolkällor för denitrifikation i vattenreningsverk för att främja hållbarhet och effektivitet. Genom litteraturstudier utvärderades olika organiska restprodukters potential med avseende på denitrifikationseffektivitet, tillgänglighet & kostnad, samt miljöpåverkan. Resultaten visar att biologiskt nedbrytbara polymerer som poly(3-hydroxybutyrat-co-3- hydroxyvalerat), PLA och fermenterad matavfallsvätska är kostnadseffektiva och effektiva för denitrifikation. Mikroalgbiomassa, även om den inte är en restprodukt, visar också stor potential för kväveavlägsnande. Diskussionen fokuserar på behovet av noggrann övervakning och förbehandling för att minimera negativa effekter på denitrifikationsprocessen och främja användningen av dessa hållbara alternativ för avloppsvattenbehandling och miljöskydd. / The study investigates how organic residues can be used as carbon sources for denitrification in water treatment plants to promote sustainability and efficiency. Through literature studies, the potential of different organic residues was evaluated with respect to denitrification efficiency, availability & cost, and environmental impact. The results show that biodegradable polymers such as poly(3-hydroxybutyrate-co-3- hydroxyvalerate), PLA and food waste fermentation broth could be a cost-effective and efficient for denitrification. Microalgal biomass, although not a residual product, also shows great potential for nitrogen removal. The discussion focuses on the need for careful monitoring and pretreatment to minimize negative effects on the denitrification process and promote the use of these sustainable options for wastewater treatment and environmental protection.
325

Leaching and denitrification losses of nitrogen from corn fields as influenced by conventional- and no-till practices in soils of the Chesapeake Bay area

Menelik, G. 19 October 2005 (has links)
Research was conducted in soils of the Chesapeake Bay area primarily to determine the combined effects of tillage practice and N fertilizer application rates on N leaching and denitrification losses from corn fields. Three well known models - the NTRM, CERES- Maize, and VT-MAIZE - were also tested to determine their predictive ability of N distribution in soil and crop, the various components of the N cycle, and corn yields. To accomplish the above objectives, two field sites were located (in 1986) for a 3 year study on agronomically important and representative soils that are used for corn production in the Chesapeake Bay drainage basin. The main plot treatment was tillage and consisted of no-till and conventional-till. The subplot treatments were N application rates which consisted of 6 levels with 4 inorganic and 2 organic (sewage sludge) N fertilizers. Denitrification experiments were also conducted on the Groseclose silt loam soil to estimate and compare N loss through denitrification from both till and no-till practices. C₂H₂ was used to inhibit N₂ production and N₂O was collected in closed chambers located on the soil surface. Tensiometers and neutron moisture meter access tubes were also installed to monitor soil moisture and energy levels. Nitrogen leaching losses were determined by applying the principle of N mass balance. Denitrification N loss during the corn growing season was less than 2% of the applied N fertilizer. The N losses from the two tillage systems were not significant at p > 0.10. If Fick’s law is to be applied for predicting N loss from the soil subsequent to C₂H₂ application, sampling must occur after a minimum preset critical time. In the Groseclose soil, there was an increase in both total yield and total N uptake when sewage sludge was applied compared to the split and preplant inorganic fertilizers applied at the same rate. There was no difference in yield or N uptake due to applying N as either preplant or a split application. Where no-till management was used, there was an increase in both yield and N uptake as compared with conventional tillage. In the Suffolk soil, tillage management did not influence yield or N uptake where time and source of N application were studied. The relationship between yield and N application rates for both soil types could be described with quadratic equations. The total N recovery could also be described with quadratic equations. However, these relationships do not hold every year for every season or tillage management practice. The no-till plots retained higher moisture content than conventional tillage plots in the upper 0-100 cm depth. Below 100 cm depth, however, no-till retained less than conventional till. The gain and loss of N in soil was dependent on the tillage type and seasons of the year. During the growing season, generally the conventional tillage gained more N than the no-till. During winter, however, the N losses due to leaching were proportional to the amount of N retained at the end of the growing season. Thus, conventional tillage lost more N by leaching during the winter months. Mineralization of N was higher in conventional till, while denitrification was higher in no-till. Split application has shown less N loss due to leaching than the preplant. Mineralization, denitrification, and leaching took place from both the upper and lower zones of the soil profile. The model performances varied from year to year and from one tillage practice to another. Since they were generally written for average (normal) soil and climatic conditions, they did not make satisfactory predictions under the severe moisture conditions experienced during this study. Thus, they require a great deal of readjustment. Considering all aspects, however, the NTRM is the best model. The unmodified VT-MAIZE is the next best. / Ph. D.
326

Study of the performance of biological nutrient removal systems with and without prefermenters

Shah, Rasesh Rashmikant 01 October 2001 (has links)
No description available.
327

Metabolic network modelling of nitrification and denitrification under cyanogenic conditions

Mpongwana, Ncumisa January 2019 (has links)
Thesis (PhD (Chemical Engineering))--Cape Peninsula University of Technology, 2019 / Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (CN-) possessing the highest inhibitory effect on such processes, rendering these processes ineffective. Despite the best efforts of regulators to limit toxicant disposal into municipal wastewater sewage systems (MWSSs), free cyanide (CN-) still enters MWSSs through various pathways; hence, it has been suggested that CN- resistant or tolerant microorganisms be utilized for processes such as SNaD. To mitigate toxicant loading, organisms in SNaD have been observed to adopt a multiphase growth strategy to sequentially degrade CN- during primary growth and subsequently degrade TN during the secondary growth phase. However, CN- degrading microorganisms are not widely used for SNaD in MWSSs due to the inadequate application of suitable microorganisms (Chromobacterium violaceum, Pseudomonas aeruginosa, Thiobacillus denitrificans, Rhodospirillum palustris, Klebsiella pneumoniae, and Alcaligenes faecalis) commonly used in single-stage SNaD. The use of CN- degrading or resistant microorganisms for SNaD is a cost-effective method compared to the use of other methods of CN- removal prior to TN removal, as they involve multi-stage systems (as currently observed in MWSSs). The use of CN- degrading microorganisms, particularly when used as a consortium, presents a promising and sustainable resolution to mitigate inhibitory effects of CN- in SNaD. However, SNaD is known to be completely inhibited by CN- thus it is imperative to also study some thermodynamic parameters of SNaD under high CN- conditions to see the feasibility of the process. The Gibbs free energy is significant to understand the feasibility of SNaD, it is also vital to study Gibbs free energy to determine whether or not the biological reaction is plausible. The relationship between the rate of nitrification and Gibbs free energy was also investigated. The attained results showed that up to 37.55 mg CN-/L did not have an effect on SNaD. The consortia degraded CN- and achieved SNaD, with degradation efficiency of 92.9 and 97.7% while the degradation rate of 0.0234 and 0.139 mg/L/hr for ammonium-nitrogen (NH4-N) and CN- respectively. Moreover, all the free Gibbs energy was describing the individual processes were found to be negative, with the lowest Gibbs free energy being -756.4 and -1830.9 Kcal/mol for nitritation and nitratation in the first 48 h of the biological, reaction respectively. Additionally, a linear relationship between the rate of NH4-N and nitrite-nitrogen (NO2-N) degradation with their respective Gibbs free energy was observed. Linear model was also used to predict the relationship between NH4-N, NO2-N degradation and Gibbs free energy. These results obtained showed a good correlation between the models and the experimental data with correlation efficiency being 0.94 and 0.93 for nitritation, and nitratation, respectively. From the results found it can be deduced that SNaD is plausible under high cyanide conditions when cyanide degrading or tolerant microorganisms are employed. This can be a sustainable solution to SNaD inhibition by CN- compounds during wastewater treatment. Furthermore, a single strain was purified from the consortium and identified as Acinetobacter courvalinii. This bacterial strain was found to be able to perform sequential CN- degradation, and SNaD; an ability associated with multiphase growth strategy of the microorganism when provided with multiple nitrogenous sources, i.e. CN- and TN. The effect of CN- on nitrification and aerobic denitrification including enzyme expression, activity and protein functionality of Acinetobacter courvalinii was investigated. It was found that CN- concentration of up to 5.8 mg CN-/L did not affect the growth of Acinetobacter courvalinii. In cultures whereby the A. courvalinii isolate was used, degradation rates of CN- and NH4-N were found to be 2.2 mg CN-/L/h and 0.40 mg NH4-N/L/h, respectively. Moreover, the effect of CN- on NH4-N, nitrate-nitrogen (NO3-N) and NO2-N oxidizing enzymes was investigated, with findings indicating CN- did not affect the expression and activity of ammonia monooxygenase (AMO), but affected the activity of nitrate reductase (NaR) and nitrite reductase (NiR). Nevertheless, a slow decrease in NO2-N was observed after the addition of CN- thus confirming the activity of NaR and the activation of the denitrification pathway by the CN-. Moreover, five models’ (Monod, Moser, Rate law, Haldane, and Andrew’s model) ability to predict SNaD under CN- conditions, indicated that only Rate law, Haldane and Andrew’s models, were suited to predict both SNaD and CN- degradation. Due to low degradation rates of NH4-N and CN-, optimization of SNaD was essential. Therefore, response surface methodology was used to optimize the SNaD under CN- conditions. The physiological parameters that were considered for optimization were temperature and pH; with the result showing that the optimum for pH and temperature was 6.5 and 36.5oC respectively, with NH4-N and CN- degradation efficiency of 50 and 80.2%, respectively. Furthermore, the degradation kinetics of NH4-N and CN- were also studied under the optimum conditions in batch culture reactors, and the results showed that up to 70.6% and 97.3% of NH4-N and CN- were simultaneously degraded with degradation rates of 0.66 and 0.41 mg/L/h, respectively. The predictive ability of RSM was further compared with cybernetic models, and cybernetic models were found to better predict SNaD under CN- conditions. These results exhibited a promising solution in the management of inhibition effected of CN- towards SNaD at an industrial scale.
328

Factors affecting denitrification in headwater prairie streams

Reisinger, Alexander Joseph January 1900 (has links)
Master of Science / Department of Biology / Walter K. Dodds / Human-induced stressors such as increased nitrogen (N) loadings, altered watershed land-use, and biodiversity losses are a few of the numerous threats to aquatic systems. Prairie streams experience natural disturbances, such as flooding and desiccation, which may alter responses to anthropogenic stressors. Denitrification, the dissimilatory reduction of NO3- to N gas (N2O or N2), is the only permanent form of N removal from terrestrial or aquatic ecosystems, and is important in mitigating N pollution to streams and downstream waters. Little is known about the relationships between denitrification and riparian prairie vegetation or large consumers. In the first chapter, I used outdoor mesocosms to determine the impact of a grazing minnow, Campostoma anomalum, on structural and functional responses of prairie streams to a simulated flood, focusing on denitrification. In terrestrial ecosystems, grazing can stimulate denitrification, but this has not been studied in streams. Ammonium (NH4+) enrichments, used to simulate fish excretion, alleviated N limitations on denitrification. Both fish and NH4+ affected algal biomass accrual, but only fish affected algal filament lengths and particulate organic matter. In a second experiment, I examined the impact of woody vegetation expansion, a primary threat to tallgrass prairie, on riparian and benthic denitrification. Expansion of woody vegetation in these grasslands is due primarily to altered fire regimes, which historically inhibited woody vegetation growth. To determine the effect of woody vegetation expansion on benthic and riparian denitrification, woody vegetation was removed from the riparian zone of a grazed and an ungrazed watershed. Both soil and benthic denitrification rates from this removal buffer were compared to rates in grassy or woody riparian zones. Riparian soil denitrification was highly seasonal, with greatest rates occurring during early spring, and rates being low throughout the remainder of the year. Benthic denitrification was also temporally variable but did not exhibit seasonal trends, suggesting benthic denitrification is driven by factors other than water temperature. Removal of woody vegetation stimulated soil and benthic denitrification rates over rates found in naturally vegetated riparian zones. Elevated N loadings will continue to affect aquatic ecosystems, and these effects may be exacerbated by biodiversity losses or changing riparian vegetation.
329

Flytslam i Lövsta avloppsreningsverk : påverkande faktorer och potentiella åtgärder / Rising Sludge in Lövsta Wastewater Treatment Plant : Influencing Factors and Potential Solutions

Kamp, Matilde January 2016 (has links)
Ett avgörande steg i avloppsvattenrening med aktivslammetoden är att slammet kan avskiljas från det renade vattnet. Detta sker oftast i sedimenteringsbassänger. Sedimenteringsproblem är dock vanliga på många avloppsreningsverk, vilket kan leda till att föroreningar följer med utgående vatten. Studier om slamegenskaper är därför viktiga för att öka förståelsen för vilka faktorer som påverkar sedimenteringen och vad som kan göras för att minska problemen. I detta examensarbete har ett mindre avloppsreningsverk i Lövsta utanför Uppsala studerats. Ungefär en tredjedel av flödet till verket kommer från ett närliggande slakteri. Verket har återkommande problem med flytslam i slutsedimenteringsbassängen. Syftet med arbetet var att – genom litteraturstudier, provtagning, fullskaleförsök och analys – identifiera orsaker till flytslamproblemen. Även förslag till åtgärder skulle läggas fram. En utvärdering av reningsprocessen genomfördes dels utifrån befintliga mätdata, dels genom utförligare provtagningar och mätningar som gjordes under en treveckorsperiod i oktober. Höga nitrathalter observerades i vattnet, särskilt i den utjämningstank där flödesutjämning och förbehandling av slakterivattnet sker. De höga nitrathalterna, i kombination med en lång slamuppehållstid i slutsedimenteringsbassängen, bedömdes vara orsaken till flytslambildningen eftersom båda dessa faktorer gynnar uppkomsten av kvävgas genom denitrifikation. Det är denna gas som lyfter slammet från botten av bassängen till ytan. Två möjliga åtgärder för att lösa flytslamproblemen bedömdes vara genomförbara. Den ena var att öka bortpumpningen av slam från botten av slutsedimenteringsbassängen, för att förkorta slamuppehållstiden. Den andra var att denitrifiera vattnet innan det når slutsedimenteringen. Av dessa förslag ansågs det senare vara mer tilltalande ur både ekonomisk och miljömässig synvinkel. En strategi för att denitrifiera vattnet bedömdes vara intermittent luftning av utjämningstanken. Denna luftningsstrategi tillämpades under en försöksperiod på tio veckor. Nitrathalterna mättes en eller två gånger i veckan under försöksperioden. En sänkning av nitrathalterna observerades: från 182 mg/l till som lägst 60 mg/l i utjämningstanken och från 65 mg/l till som lägst 18 mg/l i luftningsbassängen. Sänkningen var dock inte tillräcklig för att förhindra flytslambildning i sedimenteringsbassängerna. Den ofullständiga denitrifikationen berodde troligtvis på för låga BOD-halter i utjämningstanken. Vidare undersökningar behövs för att utvärdera och optimera kvävereningen genom intermittent luftning. / One of the most crucial steps in wastewater treatment with activated sludge is the separation of sludge from the treated effluent. This is most often done by sedimentation in clarifiers. Sedimentation problems are, however, common in many wastewater treatment plants, causing higher concentrations of pollutants in the effluent. Research on sludge characteristics is therefore important to increase the knowledge about which factors affect the sludge settling properties and what can be done to minimize problems. In this master thesis a small wastewater treatment plant in Lövsta outside Uppsala, Sweden, was investigated. About a third of the influent water to the plant comes from a slaughterhouse situated nearby. The plant suffers from recurrent problems with rising sludge in the secondary clarifier. The purpose of this thesis was to – through literature studies, sampling, full scale experiments and analysis – identify causes for the rising sludge problem. Also, suggestions to remedy the problem were to be presented. An evaluation of the treatment process was conducted from existing measurement data and from sampling and measuring done for three weeks in October. High concentrations of nitrate were found in the water, especially in the equalization tank, where flow equalization and primary treatment of the slaughterhouse wastewater takes place. The high concentrations of nitrate, in combination with a long sludge retention time in the secondary clarifier, were judged to be the reason for the formation of rising sludge. Both of these factors stimulate the development of nitrogen gas through denitrification. This gas lifts the sludge from the bottom of the clarifier to the water surface. Two possible solutions to the rising sludge problem were considered feasible. One was to increase the pumping of sludge from the bottom of the secondary clarifier, to decrease the sludge retention time. The second was to denitrify the water before it reaches the clarifiers. Of these two suggestions, the second was regarded as more appealing from both an economical and an environmental point of view. One method to denitrify the water was deemed to be intermittent aeration in the equalization tank. This aeration strategy was implemented for ten weeks. Nitrate concentrations were measured one or two times a week for this period of time. A decrease in nitrate concentrations was observed: from 182 mg/L to at its lowest 62 mg/L in the equalization tank, and from 65 mg/L to at its lowest 18 mg/L in the aeration tank. The decrease was, however, not enough to prevent formation of rising sludge in the clarifiers. The incomplete denitrification process was thought to be due to low concentrations of BOD in the equalization tank. Further studies need to be carried out to evaluate and optimize the nitrogen removal through intermittent aeration.
330

In situ denitrification of nitrate rich groundwater in Marydale, Northern Cape

Israel (Clarke), Sumaya 12 1900 (has links)
Thesis (MScAgric (Soil Science))--University of Stellenbosch, 2007. / South Africa is a water scarce country and in certain regions the quantity of surface water is insufficient to provide communities with their domestic water needs. In many arid areas groundwater is often the sole source of water. This total dependence means that groundwater quality is of paramount importance. A high nitrate concentration in groundwater is a common cause of water being declared unfit for use and denitrification has been proposed as a potential remedy. In groundwater of the Marydale district in the Northern Cape Province, nitrate levels are high enough to be of concern for domestic and livestock consumption. A review of the literature indicates that bacterial denitrification of groundwater can be achieved in situ by using a suitable energy substrate. The technology has been tested elsewhere in the world but more certainty is needed on whether it is a feasible option for local groundwater remediation using local, cost-effective energy substrates and exploiting bacterial populations present naturally in the regolith. The objective of this study was to perform denitrification experiments by laboratory incubation using soil and groundwater samples collected in Marydale in order to determine; 1) The effectiveness of different carbon sources; 2) The effect of using soil sampled at different depths; 3) The effect of C:N ratio of the carbon substrate; and 4) The quality of resultant water. Various experiments were set up using 10 g soil and 40 mL groundwater with different concentrations of carbon sources (sawdust, glucose, maize meal and methanol). All experiments were done under a nitrogen atmosphere to exclude oxygen and temperature was kept constant at 23 °C. Indicator parameters were selected based on literature review, and major cations and anions and some metals were analysed for initially and at selected times during each experiment to evaluate whether major ion chemistry was changing over time. Parameters analysed in supernatant solutions after varying periods of time to indicate progress of denitrification and reduction included nitrate, nitrite, sulfate, alkalinity, chloride, acetate, basic cations, ammonium, pH, electrical conductivity, dissolved organic carbon, heteThe Marydale groundwater in some boreholes is of predominantly NaCl type and the nitrate concentration of 19-32 mg/L as N exceeds ideal limits for drinking water of 6mg/L as N . Two soil materials were sampled at different depths from a red sand overlying calcrete (Plooysburg form, Family Py1000). The incubation experiments showed denitrification was complete within a period of between 1 and 6 weeks depending on the carbon substrate and C:N used. Higher rates of nitrate removal were achieved where greater C:N was used. Readily degradable carbon substrates e.g. glucose showed rapid denitrification, while sawdust, a slowly degradable substrate, effected slower denitrification, hence it was concluded that intermediately degradable carbon substrates e.g. wheat straw may prove more suitable. Use of shallower soil material containing initially higher nitrate levels resulted in better denitrification rates, however, both soil materials effected denitrification.. Heterotrophic plate counts increased with time, this presence and growth of heterotrophic bacteria confirmed that conditions were optimum for growth and denitrification and that inoculation with bacteria is not a requirement for in situ denitrification. Dissolved organic carbon (DOC) concentration could be directly correlated to the initial input of carbon substrate as soil and groundwater lacked organic material. Results showed that reaction products such as acetate and nitrite, and basic cation concentrations were elevated in the supernatant solution in preliminary experiments. This was interpreted to be attributed to incomplete oxidation of organic material and excess soluble and available carbon for reaction. Cation concentrations were interpreted to have resulted from a decrease in pH brought on by organic acids produced during denitrification. The method used showed specificity, as the only parameters affected by the denitrification experiment were DOC, alkalinity, nitrite, nitrate, and the heterotrophic plate count. The DOC and HPC did not comply with acceptable levels for drinking water. Removal of HPC by boiling or chlorinating is required to ensure that the resultant water composition is of potable quality. For further research with slowly degradable carbon sources it is recommended that a C:N ratio of more than 12 should be employed, and monitoring should focus on soluble carbon nitrate, nitrite, and heterotrophic plate count. The study confirmed that denitrification of this groundwater with a range of carbon sources is possible within a short period of anaerobic contact with local soil material. With sufficient knowledge of the characteristics of the soil and groundwater in the area, establishment of a working in situ denitrification plant is probably feasible.

Page generated in 0.1082 seconds