711 |
Development of a Continuous Density Gradient of Immobilized Probes for Controlling the Stringency of DNA HybridizationNoor, Muhammad Omair 12 January 2011 (has links)
A new format for microfluidic based DNA biosensors is presented in which the biorecognition element (single stranded DNA probes) is immobilized as a continuous density gradient of probes along the length of a microfluidic channel instead of a standard array format commonly used in microarray technologies or DNA based biosensors. The development of continuous density gradients of immobilized probe was achieved by electrokinetically subjecting probes that were terminated with an appropriate functional group for a surface coupling reaction to increasing convective velocity along the length of the microfluidic channel. This gradient format was able to discriminate between a fully complementary target and one containing 3 BPM based
on the spatial pattern of hybridization for picomole quantities of DNA targets. Temperature mediated destabilization of DNA hybrids demonstrated that the density of immobilized probes plays an important role in the thermodynamic stability of DNA hybrids. In addition, it was found that efficiency, selectivity and melt temperature of DNA hybrids for surface based hybridization is dependent on the density of the probe molecules.
|
712 |
Diimine complexes of ruthenium(ii), rhenium(i) and iron(ii): from synthesis to DFT studiesKirgan, Robert A. 08 1900 (has links)
The chloro and pyridinate derivatives of rhenium(I) tricarbonyl complexes containing the diimine ligands 2,2’-bipyrazine (bpz) and 5,5’-dimethyl-2,2’-bipyrazine (Me2bpz) are discussed. When compared to similar rhenium(I) tricarbonyl complexes of 2,2’-bipyridine (bpy) and 2,2’-bipyrimidine (bpm), the Me2bpz complexes are comparable to bpm derivatives and their properties are intermediate between those of bpy and bpz complexes.
Also discussed is the synthesis and properties of two new analogues of ruthenium(II) tris-bipyridine, a monomer and dimer. The complexes contain the ligand 6,6’-(1,2-ethanediyl)bis-2,2’-bipyridine (O-bpy) which contains two bipyridine units bridged in the 6,6’ positions by an ethylene group. Crystal structures of the two complexes formulated as [Ru(bpy)(O-bpy)](PF6)2 and [(Ru(bpy)2)2(O-bpy)](PF6)4 reveal structures of lower symmetry than D3 which affects the electronic properties of the complexes as revealed by Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT) calculations. Iron(II) tris-bipyrazine undergoes dissociation in solution with loss of the three bipyrazine ligands. The rate of the reaction in acetonitrile depends on the concentration of anions present in the solution. The rate is fastest in the presence of Cl- and slowest in the presence of Br-. In a second discussion DFT calculations are used to explore four iron(II) diimine complexes. DFT calculations show the higher energy HOMO (highest occupied molecular orbital) orbitals of the four complexes are metal centered and the lower energy LUMO (lowest unoccupied molecular orbitals) are ligand centered. / Dissertation(Ph.D.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Chemistry
|
713 |
Development of a Continuous Density Gradient of Immobilized Probes for Controlling the Stringency of DNA HybridizationNoor, Muhammad Omair 12 January 2011 (has links)
A new format for microfluidic based DNA biosensors is presented in which the biorecognition element (single stranded DNA probes) is immobilized as a continuous density gradient of probes along the length of a microfluidic channel instead of a standard array format commonly used in microarray technologies or DNA based biosensors. The development of continuous density gradients of immobilized probe was achieved by electrokinetically subjecting probes that were terminated with an appropriate functional group for a surface coupling reaction to increasing convective velocity along the length of the microfluidic channel. This gradient format was able to discriminate between a fully complementary target and one containing 3 BPM based
on the spatial pattern of hybridization for picomole quantities of DNA targets. Temperature mediated destabilization of DNA hybrids demonstrated that the density of immobilized probes plays an important role in the thermodynamic stability of DNA hybrids. In addition, it was found that efficiency, selectivity and melt temperature of DNA hybrids for surface based hybridization is dependent on the density of the probe molecules.
|
714 |
Hur sker förtätning? : En studie av detaljplaner i NorrköpingNuija, Veronica January 2013 (has links)
No description available.
|
715 |
Experimental Investigation of Film Cooling Effectiveness on Gas Turbine BladesLi, Shiou-Jiuan 14 March 2013 (has links)
High turbine inlet temperature becomes necessary for increasing thermal efficiency of modern gas turbines. To prevent failure of turbine components, advance cooling technologies have been applied to different portions of turbine blades.
The detailed film cooling effectiveness distributions along a rotor blade has been studied under combined effects of upstream trailing edge unsteady wake with coolant ejection by the pressure sensitive paint (PSP). The experiment is conducted in a low speed wind tunnel with a five blade linear cascade and exit Reynolds number is 370,000. The density ratios for both blade and trailing edge coolant ejection range from 1.5 to 2.0. Blade blowing ratios are 0.5 and 1.0 on suction surface and 1.0 and 2.0 on pressure surface. Trailing edge jet blowing ratio and Strouhal number are 1.0 and 0.12, respectively. Results show the unsteady wake reduces overall effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances overall effectiveness. Results also show that the overall effectiveness increases by using heavier coolant for ejection and blade film cooling.
Leading edge film cooling has been investigated using PSP. There are two test models: seven and three-row of film holes for simulating vane and blade, respectively. Four film holes’ configurations are used for both models: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Density ratios are 1.0 to 2.0 while blowing ratios are 0.5 to 1.5. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900. The turbulence intensity near test model is about 7%. The results show the shaped holes have overall higher effectiveness than cylindrical holes for both designs. As increasing density ratio, density effect on shaped holes becomes evident. Radial angle holes perform better than compound angle holes as increasing blowing and density ratios. Increasing density ratio generally increases overall effectiveness for all configurations and blowing ratios. One exception occurs for compound angle and radial angle shaped hole of three-row design at lower blowing ratio. Effectiveness along stagnation row reduces as increasing density ratio due to coolant jet with insufficient momentum caused by heavier density coolant, shaped hole, and stagnation row.
|
716 |
In-line Extrusion Monitoring and Product QualityFarahani Alavi, Forouzandeh 15 September 2011 (has links)
Defects in polyethylene film are often caused by contaminant particles in the polymer melt. In this research, particle properties obtainable from in-line melt monitoring, combined with processing information, are used to predict film defect properties.
“Model” particles (solid and hollow glass microspheres, aluminum powder, ceramic microspheres, glass fibers, wood particles, and cross-linked polyethylene) were injected into low-density polyethylene extruder feed. Defects resulted when the polyethylene containing particles was extruded through a film die and stretched by a take-up roller as it cooled to form films 57 to 241mm in thickness.
Two off-line analysis methods were further developed and applied to the defects: polarized light imaging and interferometric imaging. Polarized light showed residual stresses in the film caused by the particle as well as properties of the embedded particle. Interferometry enabled measures of the film distortion, notably defect volume. From the images, only three attributes were required for mathematical modeling: particle area, defect area, and defect volume. These attributes yielded two ”primary defect properties”: average defect height and magnification (of particle area). For all spherical particles, empirical correlations of these properties were obtained for each of the two major types of defects that emerged: high average height and low average height defects. Analysis of data for non-spherical particles was limited to showing how, in some cases, their data differed from the spherical particle correlations.
To help explain empirical correlations of the primary defect properties with film thickness, a simple model was proposed and found to be supported by the high average height defect data: the “constant defect volume per unit particle area” model. It assumes that the product of average defect height and magnification is a constant for all film thicknesses.
A numerical example illustrates how the methodology developed in this work can be used as a starting point for predicting film defect properties in industrial systems. A limitation is that each prediction yields two pairs of primary defect property values, one pair for each defect type. If it is necessary to identify the dominant type, then measurement of a length dimension of sufficient defects in the film is required.
|
717 |
Compact Living: Rethinking Calgary's LanewaysKennedy, Matthew 10 July 2012 (has links)
Through architectural design, this investigation explores a strategy for defining the back alley as a new place of community and dwelling. The study considers ideas to design living spaces that offer amenities in a compact form as well as the creation of meaningful public and private spaces within the context of existing Calgary, Alberta, Canada neighborhoods. This thesis examines
and evaluates ideas for the adaptation of patterns of existing communities to allow an increase in density to accommodate a diverse scope of families, life styles, income quintiles and utilization. The focus of the study is on small units of incremental change at a scale which can be undertaken by the individual homeowner or contractor. This study believes that it is in this spectrum that some of the most powerful and effective changes can be made in the urban fabric.
|
718 |
Computational Study of Electronic and Transport Properties of Novel Boron and Carbon Nano-StructuresSadrzadeh, Arta 24 July 2013 (has links)
In the first part of this dissertation, we study mainly novel boron structures and their electronic and mechanical properties, using ab initio calculations. The electronic structure and construction of the boron buckyball B80, and boron nanotubes as the α-sheet wrapped around a cylinder are studied. The α-sheet is considered so far to be the most stable structure energetically out of the two dimensional boron assemblies. We will argue however that there are other sheets close in energy, using cluster expansion method. The boron buckyball is shown to have different possible isomers. Characterization of these isomers according to their geometry and electronic structure is studied in detail. Since the B80 structure is made of interwoven double-ring clusters, we also investigate double-rings with various diameters. We investigate the properties of nanotubes obtained from α-sheet. Computations confirm their high stability and identify mechanical stiffness parameters. Careful relaxation reveals the curvature-induced buckling of certain atoms off the original plane. This distortion opens up the gap in narrow tubes, rendering them semi-conducting. Wider tubes with the diameter d 1.7 nm retain original metallic character of the α-sheet. We conclude this part by investigation into hydrogen storage capacity of boron-rich compounds, namely the metallacarboranes. In the second part of dissertation, we switch our focus to electronic and transport properties of carbon nano-structures. We study the application of carbon nanotubes as electro-chemical gas sensors. The effect of physisorption of NO2 gas molecules on electron transport properties of semi-conducting carbon nanotubes is studied using ab initio calculations and Green’s function formalism. It is shown that upon exposure of nanotube to different concentrations of gas, the common feature is the shift in conductance towards lower energies. This suggests that physisorption of NO2 will result in a decrease (increase) in conductance of p-type (n-type) nanotubes with Fermi energies close to the edge of valence and conduction band. Finally we study the effect of torsion on electronic properties of carbon nano-ribbons, using helical symmetry of the structures.
|
719 |
Studies of Capacity Losses in Cycles and Storages for a Li1.1Mn1.9 O 4 Positive ElectrodeNishibori, Eiji, Takata, Masaki, Sakata, Makoto, Fujita, Miho, Sano, Mitsuru, Saitoh, Motoharu January 2004 (has links)
No description available.
|
720 |
Coffee Consumption in Relation to Osteoporosis and Fractures : Observational Studies in Men and WomenHallström, Helena January 2013 (has links)
During the past decades, the incidence of osteoporotic fractures has increased dramatically in the Western world. Consumption of coffee and intake of caffeine have in some studies been found to be associated with increased risk of osteoporotic fractures, but overall results from previous research are inconsistent. Despite weak evidence, some osteoporosis organisations recommend limiting daily coffee or caffeine intake. The primary aim of this thesis was to study the association between long-term consumption of coffee and bone mineral density (BMD), incidence of osteoporosis and fractures. A secondary aim was to study the relation between tea consumption and fracture risk. An increased risk of osteoporotic fractures in individuals who consumed ≥ 4 cups of coffee vs < 1 cup coffee per day was demonstrated in a study of 31,257 Swedish middle-aged and elderly women (a part of the Swedish Mammography Cohort - SMC) when calcium intake was low (< 700 mg/day). However, no higher risks of osteoporosis or fractures were observed in the full SMC with increasing coffee consumption. In the full SMC (n = 61,433) the follow-up was longer and the number of fractures was higher. Similarly, no statistically significant associations between consumption of coffee (≥ 4 cups of coffee vs < 1 cup) and incidence of osteoporotic fractures were observed in the Cohort of Swedish Men (COSM), including 45,339 men. Calcium intake did not modify the results from the investigations performed in the full SMC or COSM. Nonetheless, a 2 - 4% lower BMD at measured sites was observed in men participating in the PIVUS cohort and in women from a sub-cohort of the SMC who consumed ≥ 4 cups of coffee vs < 1 cup daily. Individuals with high coffee intake and rapid metabolism of caffeine had lower BMD at the femoral neck. No association between tea consumption and risk of fractures was found in the studies. In conclusion, the findings presented in this thesis demonstrate that high consumption of coffee may be associated with a modest decrease in BMD. However, there was no evidence of a substantially increased incidence of osteoporosis or fractures typically associated with osteoporosis.
|
Page generated in 0.056 seconds