771 |
First principles calculations of thermodynamics of high temperature metal hydrides for NGNP applicationsNicholson, Kelly Marie 21 September 2015 (has links)
In addition to their potential use at low to moderate temperatures in mobile fuel cell technologies, metal hydrides may also find application as high temperature tritium getterers in the U.S. DOE Next Generation Nuclear Plant (NGNP). We use Density Functional Theory to identify metal hydrides capable of sequestering tritium at temperatures in excess of 1000 K. First we establish the minimum level of theory required to accurately capture the thermodynamics of highly stable metal hydrides and determine that isotope effects can be neglected for material screening. Binary hydride thermodynamics are largely well established, and ternary and higher hydrides typically either do not form or decompose at lower temperatures. In this thesis we investigate anomalous systems with enhanced stability in order to identify candidates for the NGNP application beyond the binary hydrides. Methods implemented in this work are particularly useful for deriving finite temperature phase stability behavior in condensed systems. We use grand potential minimization methods to predict the interstitial Th−Zr−H phase diagram and apply high throughput, semi-automated screening methodologies to identify candidate complex transition metal hydrides (CTMHs) from a diverse library of all known, simulation ready ternary and quaternary CTMHs (102 materials) and 149 hypothetical ternary CTMHs based on existing prototype structures. Our calculations significantly expand both the thermodynamic data available for known CTMHs and the potential composition space over which previously unobserved CTMHs may be thermodynamically stable. Initial calculations indicate that the overall economic viability of the tritium sequestration system for the NGNP will largely depend on the amount of protium rather than tritium in the metal hydride gettering bed feed stream.
|
772 |
Modeling, design, fabrication and demonstration of 3D IPAC glass power modulesGandhi, Saumya 21 September 2015 (has links)
The advent of smart and wearable systems along with their Internet of Things (IoT) applications are driving unparalleled product miniaturization and multifunctional integration with computing, wireless communications, wireless healthcare, security, banking, entertainment, and navigation and others. This evolution is primarily enabled by the integration of multiple technologies such as RF, analog, digital, MEMS, sensors and optics in the same system. Integration of these heterogeneous technologies creates a new need for multiple power supply rails to provide device-specific voltage and current levels. Hence, multiple power converters, each requiring several passive components, are used to create stable power-supplies. However, state-of-art power supplies employ SMD passives that are relatively large, forcing these modules to be placed on the board far from the active IC. This leads to significantly sub-par frequency performance and poses a challenge for ultra-miniaturized and reliable power supplies. Hence, novel packaging technologies that can improve miniaturization, electrical performance and reliability at a relatively low-cost are required to address these challenges. Georgia Tech-PRC proposes 3D integration of passives and actives (3D IPAC) as doubleside thin components on ultra-thin glass substrates with through-package-vias (TPVs) to meet these requirements. This thesis focuses on a comprehensive methodology to demonstrate a 3D IPAC power module, starting with modeling, design, fabrication and characterization to validate 3D integrated ultra-thin inductors and capacitors in ultra-thin substrates. Another key focus of this thesis is to advance building block technologies such as thinfilm inductors and capacitors to achieve the target properties for 3D IPAC integration.
As a first building block technology, advanced capacitor technologies were explored with high-k thinfilm barium strontium titanate dielectrics and lanthanum nickel oxide electrodes as an alternative to Cu, Ni and Pt electrodes for improved performance and cost. The BST capacitors with LNO electrodes resulted in a capacitance density of 20-30 nF/cm2 with leakage as low as nA/nF up to 3 V. A glass-compatible process was developed with crystallization temperatures less than 650 C. These capacitors with thinfilm electrodes and dielectrics can be integrated into ultra-thin interposers and packages. This can help improve the capacitor performance up to the GHz range.
As a next build block, Si-nanowires were studied as high surface area electrodes for high-density capacitors. Analytical modeling was performed to understand the length of the nanowires based on the catalyst size. This modeling study was then extended to understand the cut-off frequency of the capacitors based on the RC time constant. The wires were fabricated using both chemical vapor deposition (CVD) and wet-etch processes. However, it was noticed that the wet-etch process provided more control on the geometry, density and orientation of the nanowires. Si-oxide was thermally grown on the surface of the wires. A capacitance density of 200 nF/mm2 was achieved. It was noticed that the cut-off frequency of such capacitors was limited to the lower kHz range. However, the operating frequency can be improved by simply using a highly conductive Si-substrate.
The second part of the thesis focuses on inductor and capacitor integration on ultra-thin glass substrates for high-frequency power modules using the 3D IPAC approach. Analytical models were used to calculate the required passive component values based on the target frequency, ripple currents and voltages of the power module. Next, a SPICE model was used to optimize the value of the required passives based on the output parasitics. The L and C structures were then modeled using 2.5D method of moments (MOM) approach. The modeling results showed 7-8 X improvement in Q-factor when the structures were fabricated using the 3D IPAC approach relative to those fabricated on the same side of the substrate. A fabrication process flow was designed based on through-via and doubleside metallization with semi-additive patterning (SAP). The components were fabricated as thinfilms on either sides of the substrate and interconnected with through-vias. The LC network was characterized using a two-port vector network analyzer. The results showed low-pass filter response, which matched the design targets of cut-off frequencies upto 100 MHz. This study, therefore, demonstrates advanced thinfilm component technologies for ultra-high frequency power-supply. It also presents, for the first time, a 3D integrated passives and actives (3D IPAC) approach with integrated L and C for power modules.
|
773 |
Multiple phase transition path and saddle point search in computer aided nano designHe, Lijuan 21 September 2015 (has links)
Functional materials with controllable phase transitions have been widely used in devices for information storage (e.g. hard-disk, CD-ROM, memory) and energy storage (e.g. battery, shape memory alloy). One of the important issues to design such materials is to realize the desirable phase transition processes, in which atomistic simulation can be used for the prediction of materials properties. The accuracy of the prediction is largely dependent on searching the true value of the transition rate, which is determined by the minimum energy barrier between stable states, i.e. the saddle point on a potential energy surface (PES). Although a number of methods that search for saddle points on a PES have been developed, they intend to locate only one saddle point with the maximum energy along the transition path at a time. In addition, they do not consider the input uncertainty associated with the calculation of potential energy. To overcome the limitations, in this dissertation, new saddle point search methods are developed to provide a global view of energy landscape with improved efficiency and robustness. First, a concurrent search algorithm for multiple phase transition pathways is developed. The algorithm is able to search multiple local minima and saddle points simultaneously without prior knowledge of initial and final stable configurations. A new representation of transition paths based on parametric Bézier curves is introduced. A curve subdivision scheme is developed to dynamically locate all the intermediate local minima and saddle points along the transition path. Second, a curve swarm search algorithm is developed to exhaustively locate the local minima and saddle points within a region concurrently. The algorithm is based on the flocking of multiple groups of curves. A collective potential model is built to simulate the communication activities among curves. Third, a hybrid saddle-point search method using stochastic kriging models is developed to improve the efficiency of the search algorithm as well as to incorporate model-form uncertainty and numerical errors associated with density functional theory calculation. These algorithms are demonstrated by predicting the hydrogen diffusion process in FeTiH and body-centered iron Fe8H systems.
|
774 |
EASTERN U.S. TREE-RING WIDTHS AND DENSITIES AS INDICATORS OF PAST CLIMATE.CONKEY, LAURA ELIZABETH. January 1982 (has links)
Long-lived trees preserve a record of environmental conditions during their lifetime in the pattern of yearly xylem widths and in changing wood density within and among the increments. Crossdated earlywood, latewood, and total ring widths, and minimum earlywood and maximum latewood densities, from three sites in the mountains of Maine, are analyzed visually and statistically to evaluate their relationships to one another and to external, environmental factors which affect the ring width and density through internal, physiological processes. Maximum density values show highest levels of similarity within and among the three site chronologies, thus implying a good degree of sensitivity to climate; minimum density values, however, showed lowest sensitivity to climate. Two biologically reasonable hypotheses concerning climate--tree growth interactions are proposed: (1) that maximum density is related to spring temperatures prior to its formation; and (2) that maximum density is related to summer water relations as the latewood forms. With the help of response function analysis, simple correlation, and multiple linear regression, these two hypotheses are tested: (1) maxmum density as a single predictor explains up to 37% of spring temperature variance; with earlywood widths at one site, 47% of spring temperature variance is explained; (2) maximum density as a single predictor explains up to 45% of summer temperature variance, 11% of summer precipitation variance, and 23% of the variance of Thornthwaite water deficit values; with total ring widths at one site, 22% of the variance of summer stream runoff is explained. Regression equations were applied to the 201- to 310-year tree-ring records to form reconstructions of these past climatic events. Independent verification testing of the reconstructions strongly validates the relationship between maximum density and spring temperature; the relationship to summer water relations is not as strongly verified, but results encourage further testin of this relationship. Results from this study may be applied both to (1) an increased understanding of relationship of climate to the formation of wood density; and (2) further development of dendroclimatology in mesic regions such as northeastern North America.
|
775 |
Modelling Probability Distributions from Data and its Influence on SimulationHörmann, Wolfgang, Bayar, Onur January 2000 (has links) (PDF)
Generating random variates as generalisation of a given sample is an important task for stochastic simulations. The three main methods suggested in the literature are: fitting a standard distribution, constructing an empirical distribution that approximates the cumulative distribution function and generating variates from the kernel density estimate of the data. The last method is practically unknown in the simulation literature although it is as simple as the other two methods. The comparison of the theoretical performance of the methods and the results of three small simulation studies show that a variance corrected version of kernel density estimation performs best and should be used for generating variates directly from a sample. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
776 |
LIFE HISTORY AND POPULATION DYNAMICS OF SABLE ISLAND HORSES2015 March 1900 (has links)
Individual-level life-history strategies are the rails that guide population dynamics. Due to the difficulty of conducting long-term, individual-based studies, current management practices often focus on estimating and controlling demographic rates with little consideration for the individual-level responses that guide them. This approach cannot account for important factors such as age-specific responses to changes in population density or long-term impacts of conspecific density and resource limitation. As such, population-level approaches may fail to predict age structure or the rate of population growth. Recent studies of mammals and birds have shown that short-term changes in factors such as population density can have lasting impacts on vital rates of individuals. These results highlight the importance of long-term individual-based analyses in understanding population dynamics. However, very few researchers have thus far been able to isolate and study interacting effects of density and resources on life histories apart from processes such as predation, interspecific competition, and management of anthropogenic disturbance.
The feral horses (Equus ferus caballus) of Sable Island, Nova Scotia, Canada, exist in a natural though simplified system without predation, human interference, or interspecific competition (they are the island’s only terrestrial mammal, numbering approximately 500 individuals). Here I determined the roles of local conspecific density and an interacting resource gradient in guiding the reproduction and survival of adult female Sable Island horses (2008–2012). I used body condition (estimates of subcutaneous fat) as an indication of resource allocation towards the often conflicting purposes of reproduction and maintenance. Reproduction was best predicted by body condition (reproducing females were in relatively poorer condition) but there was also evidence of density-dependence in reproductive success. Survival was predicted by and positively related to body condition. Survival was also predicted by an interaction between conspecific density and location on the island consistent with expectations of a known east-west resource gradient that occurs on Sable Island (in available water and forage). Greater variability in fitness estimates in resource-poor, eastern Sable Island suggests that regions of low density and resources may be high risk/high reward habitats. Such habitats may be disproportionately avoided by young animals and exploited by senescent animals.
All feral horses are descended from domesticated animals and recent work has found evidence of artificially selected life-history traits in unmanaged populations of domestic mammals like cattle, sheep, and horses (e.g., reproducing even at high densities and earlier in life than expected). I therefore attempted to determine if effects of artificial selection existed in the Sable Island population by examining age-based contributions to population growth and the relationship between reproduction (foaling) and female mortality. Perhaps due to the population’s long history of low management (>250 years), I failed to find any strong evidence of artificially selected life-history traits in Sable Island horses. That is, life history trade-offs in survival and reproduction in Sable Island horses were more similar to wild species of large herbivores inhabiting natural environments, than other populations of feral ungulates. My research suggests a rarely documented but fascinating instance of reversal of artificial selection by natural selection for a domesticated species like the horse.
|
777 |
The paint gapDahl, Samuel Alcibiades, 1980- 24 November 2010 (has links)
Underlying all my work is a tension between the painter and the builder. I love to paint. I love the lie inherent in paint: that it can make a picture plane masquerade as light, space, or recognizable place with recognizable figuration. I love how paint—particularly oil paint—can rest in gloppy piles, how it can drip, splatter, spread, or how it can squeeze out of paint tubes in long, stringy beads. I love how paint changes how we see an interior space or a three-dimensional form. Yet I also love building things—usually out of wood—measuring and cutting, fastening things together—all to serve a function or solve a problem. In every studio I have had, there has always been an arms race between my fine art supplies and my tools. My work during my three years at the Department of Art and Art History at the University of Texas at Austin has undergone some dramatic changes. In large part this paper will elaborate and evaluate the trajectory of these changes. Yet, in spite of these changes, the competing impulses to paint and to build have remained constant. This report will leave unanswered the question whether these two impulses can or should be reconciled, kept separate, or whether one should be sacrificed in favor of the other. The artist writing this report does not know at this point in time, and cannot hope to answer this question without making more work in a new context. This report instead will reveal how I arrived at the work I am making at the time of writing this report, and why I regard this new body of work as being about the “paint gap.” I define the “paint gap” as the distinction—mild or strong—between paint itself and the object or surface upon which paint is applied. / text
|
778 |
First-principles atomistic modeling for property prediction in silicon-based materialsBondi, Robert James 02 February 2011 (has links)
The power of parallel supercomputing resources has progressed to the point where first-principles calculations involving systems up to 10³ atoms are feasible, allowing ab initio exploration of increasingly complex systems such as amorphous networks, nanostructures, and large defect clusters. Expansion of our fundamental understanding of modified Si-based materials is paramount, as these materials will likely flourish in the foreseeable cost-driven future in diverse micro- and nanotechnologies. Here, density-functional theory calculations within the generalized gradient approximation are applied to refine configurations of Si-based materials generated from Metropolis Monte Carlo simulations and study their resultant structural properties. Particular emphasis is given to the contributions of strain and disorder on the mechanical, optical, and electronic properties of modified Si-based materials in which aspects of compositional variation, phase, strain scheme, morphology, native defect incorporation, and quantum confinement are considered. The simulation strategies discussed are easily extendable to other semiconductor systems. / text
|
779 |
Validation of ionospheric electron density profiles inferred from GPS occulation observations of the GPS/MET experimentKawakami, Todd Mori 21 March 2011 (has links)
Not available / text
|
780 |
Experimental characterization of drift-wave turbulence in the sheared, cylindrical slabLee, Kevin Michael 24 March 2011 (has links)
Plasma turbulence on a uniform density gradient with unfavorable magnetic curvature is investigated extensively in the Helimak device. The turbulence is strong with density and electrostatic potential fluctuation levels in excess of 40%. Measurements of the dispersion relation, k[subscript z], and k[subscript parallel lines] identify the the fluctuations with drift-waves, which propagate in the poloidal direction at the diamagnetic drift velocity and have a small, but nite parallel wavenumber. A non-zero phase shift between the density and potential fluctuations gives rise to turbulent cross-eld particle transport, which is measured using spectral techniques. In addition, the electrostatic drift-wave fluctuations have a small magnetic component that is driven by the turbulent parallel current [scientific symbols]. An examination of nonlinear processes associated with the plasma turbulence uncovers high levels of intermittency near the plasma edge and long-time persistence of the density fluctuations on the order of the parallel confinement time. An analysis of the bispectrum conrms the existence local and nonlocal three-wave interactions between unstable drift-waves although the turbulent saturation of the density fluctuation spectrum is likely due nonlinear processes acting in the time domain. / text
|
Page generated in 0.0596 seconds