• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 171
  • 59
  • 56
  • 11
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1123
  • 1123
  • 1067
  • 213
  • 199
  • 174
  • 161
  • 158
  • 153
  • 146
  • 145
  • 135
  • 131
  • 117
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Interactions in ionic molecular crystals.

Benedek, Nicole Ann, n.benedek@gmail.com January 2006 (has links)
We have used ab initio computational simulation techniques to investigate both intra- and intermolecular interactions in a novel family of ionic organophosphonate molecular crystals. We have examined the influence of various numerical approximations on the computed geometry and binding energies of a selection of well-characterised hydrogen bonded systems. It was found that numerical basis sets provided the efficiency required to study the large hydrogen bonded dimer anions present in the organophosphonate system, while also producing accurate geometries and binding energies. We then calculated the relaxed structures and binding energies of phenylphosphonic acid dimer in the two arrangements in which it is present in the bulk crystal. The computed geometries were in excellent agreement with the experimental structures and the binding energies were consistent with those found for other ionic hydrogen bonded systems. Electron density maps were used to gain insight into the nature of the hydrogen bonding interaction between phenylphosphonic acid dimers. We also examined the effect of aromatic ring substituents on the geometry and energetics of the hydrogen bonding interaction. The nitro-substituted dimer was predicted to have a stronger binding energy than its unsubstituted parent while the methyl-substituted dimer was predicted to have a similar binding energy to its unsubstituted parent. An analysis of crystal field effects showed that the structure of the phenylphosphonic acid dimers in the organophosphonates is a complex product of competing intra- and intermolecular forces and crystal field effects. Cooperative effects in the organophosphonate system were also investigated and it was found that the interactions were mostly one-body (local) in nature. We have examined the intramolecular charge-transfer interaction between copper-halogen cations in the organophosphonate materials. The origin of geometric differences between the Cu(I) starting material and Cu(II) product cations was attributed to the electronic configuration of the Cu ion, not crystal field effects. To gain further insight into the difference in electronic structure between the starting material and product, we attempted to simulate the step-by-step dissociation of the [CuI]+ system. Although this investigation was not successful, we were able to expose some of the pitfalls of simulating dissociating odd-electron systems. We also analysed and compared the charge-transfer interaction in the chloro-, bromo- and iodo-forms of the organophosphonate family. The charge-transfer interaction was predicted to increase on going from the chloro- to the iodo-form, consistent with solid-state UV-visible data. Finally, we used the highly accurate Quantum Monte Carlo (QMC) method to investigate the hydrogen bonding interaction in water dimer and to calculate the dissociation energy. The accuracy of the experimental estimate for the dissociation energy has recently been questioned and an alternative value has been put forward. Our results lend support to the validity of the alternative value and are also in excellent agreement with those from other high-level calculations. Our results also indicate that QMC techniques are a promising alternative to traditional wavefunction techniques in situations where both high accuracy and efficiency are important.
202

Challenges in Enzyme Catalysis - Photosystem II and Orotidine Decarboxylase : A Density Functional Theory Treatment

Lundberg, Marcus January 2005 (has links)
<p>Possibly the most fascinating biochemical mechanism remaining to be solved is the formation of oxygen from water in photosystem II. This is a critical part of the photosynthetic reaction that makes solar energy accessible to living organisms.</p><p>The present thesis uses quantum chemistry, more specifically the density functional B3LYP, to investigate a mechanism where an oxyl radical bound to manganese is the active species in O-O bond formation. Benchmark calculations on manganese systems confirm that B3LYP can be expected to give accurate results. The effect of the self-interaction error is shown to be limited. Studies of synthetic manganese complexes support the idea of a radical mechanism. A manganese complex with an oxyl radical is active in oxygen formation while manganese-oxo complexes remain inactive. Formation of the O-O bond requires a spin transition but there should be no effect on the rate. Spin transitions are also required in many short-range electron-transfer reactions.</p><p>Investigations of the superproficient enzyme orotidine decarboxylase support a mechanism that involves an invariant network of charged amino acids, acting together with at least two mobile water molecules.</p>
203

Water-Metal Surfaces : Insights from core-level spectroscopy and density functional theory

Schiros, Theanne January 2008 (has links)
<p>Computational methods are combined with synchrotron-based techniques to analyze the structure and bonding of water and water plus hydroxyl at metal surfaces under UHV and at near-ambient conditions. Water-metal interaction plays a crucial role in a multitude of cosmic, atmospheric and biological phenomena as well as heterogeneous catalysis, electrochemistry and corrosion. A spotlight of renewed interest has recently been cast on water-metal systems due to their relevance for surface chemical reactions related to the production and utilization of hydrogen as a clean energy carrier. In particular, H2O and OH are essential reaction intermediates in the renewable production of hydrogen from sunlight and water and in fuel cell electrocatalysis.</p><p>Fuel cells are considered one of the most promising power generation technologies for a sustainable energy future. A mechanistic understanding of the oxygen reduction reaction (ORR) pathway, including the role of electronic and geometric structure of the catalyst, is essential to the design of more efficient fuel cell catalysts. This is intimately connected to fundamental factors that affect the ability to form water-metal bonds as well as the site occupation and orientation of the adsorbed H2O and OH at active metal surfaces.</p><p>Key relationships related to critical issues in the fuel cell reaction are illuminated by the synergy of theory and experiment in this thesis. We emerge with a detailed understanding of the structure of the water-metal interface and the factors that rule the wettability of a metal surface, including geometric and electronic structure effects and the influence of coadsorbed species. We show that the preferred microscopic orientation of the water monolayer has consequences for macroscopic properties, and reveal the origin of the hydrophobic water layer. Finally, we identify a cooperativity effect that drives the stability of the mixed water/hydroxyl layer at metal surfaces, an important ORR intermediate.</p>
204

Electronic excitations in complex systems: beyond density functional theory for real materials

Botti, Silvana 22 April 2010 (has links) (PDF)
Aujourd'hui il est possible d'étudier à partir des premier principes la réponse sous excitation de matériaux utilisés dans des applications modernes très variés. En effet, grâce à de récents développements théoriques, ainsi qu'à l'optimisation des algorithmes de calcul, les simulations ab initio ne sont plus seulement limitées à des systèmes idéaux simplifiés, mais elles ont finalement l'ambition de capturer toute la complexité de l'échantillon testé dans l'expérience. Dans ce contexte, ce mémoire porte sur l'étude, à l'aide de différentes approches ab initio, des excitations électroniques dans une gamme de matériaux complexes et nanostructurés. Pour accéder aux excitations électroniques, la connaissance de la densité de l'état fondamental du système n'est plus suffisante, ce qui signifie que l'on doit trouver le moyen approprié d'aller au-delà de la théorie de la fonctionnelle de la densité (DFT) standard. Deux voies ont été intensivement explorées: l'une est basée sur la densité dépendante du temps et l'autre sur les fonctions de Green. La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) a été proposée en 1984 par Runge et Gross, qui ont dérivé un théorème du type Hohenberg-Kohn pour l'équation de Schrödinger en fonction du temps. Le champ d'application de cette généralisation de la théorie de la fonctionnelle de la densité inclut le calcul des spectres de photo-absorption ou, plus généralement, l'étude de l'interaction de la matière avec des champs électromagnétiques ou des particules qui la perturbent. À présent, l'application la plus populaire de cette théorie est l'extraction des propriétés de l'état électronique excité, et en particulier des fréquences d'excitation électroniques. En appliquant la TDDFT, après avoir déterminé l'état fondamental d'une molécule ou un agrégat, nous pouvons explorer et comprendre son spectre d'absorption, ayant en même temps des informations extrêmement détaillées sur le comportement du système excité. La complexité du problème à plusieurs corps en TDDFT est cachée dans le potentiel d'échange et de corrélation dépendant du temps qui apparaît dans les équations de Kohn- Sham et pour lequel il est primordial de trouver une bonne approximation. Beaucoup d'approximations ont été proposées et testées pour les systèmes finis, où même la très simple approximation TDLDA a souvent donné de très bons résultats. En général, les approximations existantes pour la fonctionnelle d'échange et corrélation fonctionnent assez bien pour certaines propriétés, mais elles se montrent insuffisantes pour d'autres. Dans le cas des matériaux solides, la TDDLA ne parvient pas à reproduire les spectres d'absorption optique, qui sont par contre bien décrits par la résolution de l'équation de Bethe-Salpeter en combinaison avec l'approximation GW pour les états de quasi-électron. D'autre part, la TDLDA peut déjà conduire à des résultats excellents pour la fonction de perte d'énergie d'un solide. La solution de l'équation de Bethe-Salpeter est beaucoup plus onéreuse du point de vue numérique. Ainsi, on poursuit encore la recherche d'approximations fiables en TDDFT, et au fil du temps, on espère atteindre la même maturité qu'on trouve maintenant dans la DFT pour l'état fondamental. En particulier, de nouvelles perspectives (et ses limites) ont étés révélées pendant ces dernières années grâce à la combinaison de deux théories distinctes : la TDDFT et l'approche des fonctions de Green (dont l'approximation GW et l'équation de Bethe- Salpeter font partie). Ces deux approches peuvent partager dans la pratique le point de départ commun de la théorie de la fonctionnelle de la densité pour le calcul de l'état fondamental électronique. Leur combinaison permet d'allier la simplicité de l'une (TDDFT) avec la précision de l'autre (GW et Bethe-Salpeter), afin d'en déduire des noyaux d'échange et de corrélation pour les solides. À partir de ces noyaux nous avons aussi travaillé sur le développement de noyaux modèles pour des applications efficaces à des systèmes de grande taille. Le présent mémoire contient une vue d'ensemble relativement condensée de la TDDFT et des approches basées sur la théorie des fonctions de Green, avec des applications aux domaines des nanotechnologies, aux matériaux photovoltaïques et au stockage de données. Ces applications ont constitué notre principal sujet de recherche au cours des dernières années. Ce mémoire est organisée comme suit. Avant d'entrer dans le domaine des approches pour les états excités, nous donnons dans le chapitre 1 un bref aperçu des idées de base de la DFT pour l'état fondamental, ce qui nous permet d'expliquer pourquoi il faut aller au-delà de la DFT standard, d'introduire quelques concepts-clés et de fixer la notation de base qui sera utilisée dans ce mémoire. Les chapitres suivants font un point sur la théorie formelle, avec une brève présentation des approches théoriques utilisées pour étudier les excitations électroniques: le chapitre 2 est dédié aux approches GW et à l'équation de Bethe-Salpeter, tandis que la TDDFT et la théorie de la réponse linéaire sont décrites dans le chapitre 3. Les noyaux dérivés à partir de l'équation de Bethe-Salpeter et notre travail sur les noyaux modèles sont discutés dans le chapitre 4. Le chapitre 5 contient des applications de la TDDFT dans le domaine de la réponse linéaire aux nanostructures. L'objectif principal est d'obtenir des spectres fiables (en général des spectres d'absorption) à partir de calculs de premiers principes. En comparant ces spectres avec des courbes expérimentales, on peut normalement déduire des informations importantes qui ne sont pas directement accessibles dans les expériences. D'autre part, la connaissance détaillée des propriétés d'excitation électronique contribue à une meilleure compréhension de la physique de ces systèmes dans leur généralité. Le chapitre 6 présente des applications à des matériaux solides d'intérêt technologique. En particulier, nous nous sommes intéressé aux propriétés optiques des matériaux à changement de phase, utilisés dans le DVD re-inscriptibles, ainsi que aux états électroniques des absorbeurs et des oxydes transparents conducteurs pour les cellules solaires à couches minces. Le chapitre 7 est dédié aux cruciales interactions de van der Waals et au calcul – via la TDDFT – des paramètres qui les décrivent. Nous discutons à la fois des interactions entre deux agrégats, et entre un agrégat et une surface semi-conductrice. Le dernier chapitre 8 fait le point sur les résultats de notre réflexion.
205

Semi-empirical and ab initio calculations of the optical properties of semiconductor superlattices

Botti, Silvana 01 February 2002 (has links) (PDF)
La réduction de taille réalisée dans les hétérostructures mène à des états électroniques, fondamental et excité, largement différents de ceux du cristal en volume, et a ouvert la voie à une nouvelle génération de dispositifs optoélectroniques et photonique. Les super-réseaux diélectriques sont par exemple développés pour leurs propriétés non linéaires. Ces effets sont également trouvés dans des hétérostructures de semi-conducteur basées sur GaAs, qui a par lui-même les propriétés optiques non linéaires importantes. Dans la recherche de nouvelles sources optiques, l'anisotropie optique des super-réseaux de GaAs/AlAs-oxidé a été exploitée pour produire la conversion des fréquences optiques. Les super-réseaux de type GaAs/AlAs constituent donc un prototype pour la compréhension des structures artificielles, et leurs propriétés optiques ont été à fond étudiées expérimentalement et théoriquement. En particulier, la réduction de la symétrie cubique initiale de la structure diamant ou zinc-blende provoque une anisotropie optique. Le comportement des composents du tenseur diélectrique du super-réseaux GaAs/AlAs en fonction de la période de barrière/puits est une question qui suscite un très grand intérêt. Expérimentalement, on a observé une baisse remarquable de la biréfringence quand la période décroît. Pour étudier la réponse optique de ces systèmes, les détails de la structure électronique doivent être pris en considération, y compris des effets comme le repliement des bandes et le confinement. Une analyse simple en termes de particules indépendantes est insuffisante: les effets à plusieurs corps peuvent jouer un rôle crucial et tendent à être particulièrement importants quand l'échelle du système est réduite. Les calculs utilisant des pseudopotentiels semi-empiriques sur de super-réseaux de grande période ont récemment fourni une analyse détaillée des effets du repliement des bandes et du confinement. Néanmoins, il n'y avait aucun accord quantitatif avec l'expérience au sujet de la biréfringence statique, et ces calculs n'ont pas pu expliquer l'augmentation de cette quantité avec l'augmentation de la période du super-réseau même qualitativement. Aussi, nous avons calculé la biréfringence statique de super-réseaux (001) (GaAs)$_n$/(AlAs)$_n$ pour une période de barrière/puits variant de n=1 à n=8, en utilisant la théorie de la fonctionnelle de densité dépendante du temps (TDDFT). Nous confirmons les résultats des calculs semi-empiriques précédents basés sur un calcul à particules indépendantes, en exécutant des calculs ab initio dans la même approximation. Cependant, nous montrons que l'inclusion des effets de champs locaux change complètement les composants du tenseur diélectrique: la biréfringence théorique en maintenant en bon accord avec l'expérience. En fait, on obtient l'accord qualitatif, et quantitatif avec l'expérience, en incluant les effets de champs locaux. On montre en particulier que l'anisotropie des champs locaux explique les tendances expérimentales observées. Étonnamment, l'utilisation de l'approche de milieu effectif, ou le super-réseau est modelisé par un empilement de couches ayant la permittivité GaAs ou AlAs, est justifiée dans la direction d'empilement même pour les petites périodes, car les effets de champs locaux et de confinement s'annulent. Par contraste, les effets de confinement sont trouvés plus grands dans le plan perpediculaire à la direction d'empilement, et la théorie de milieu effectif est insuffisante.
206

Dispersion forces in a four-component density functional theory framework

Pilemalm, Robert January 2009 (has links)
<p>The main purpose of this thesis is to implement the Gauss--Legendre quadrature for the dispersion coefficient. This has been done and can be now be made with different number of points. The calculations with this implementation has shown that the relativistic impact on helium, neon, argon and krypton is largest for krypton, that has the highest charge of its nucleus. It was also seen that the polarizability of neon as a function of the imaginary angular frequency decreases monotonically from a static value.</p>
207

Ab initio calculation of the structural, electronic, and superconducting properties of nanotubes and nanowires

Verstraete, Matthieu 06 July 2005 (has links)
The structural, electronic, and superconducting properties of one dimensional materials are calculated from first principles, using the density functional theory. Nanotubes and nanowires are important building blocks in nanotechnology, in particular for nanoelectronics. In this manuscript, the growth of carbon nanotubes is studied through the interaction between carbon and the transition metal atoms used as growth catalysts. The accepted model for a new phase of nanotube-like molybdenum disulfide is critically examined using comparisons of energetic stability and types of chemical bonding in different candidate structures which have similar compositions. The epitaxial growth of diamond carbon on (100) iridium is exceptionally favorable. The differences between various substrates used experimentally are studied, and the specificity of Ir is shown. Finally, the characteristics of the electron-phonon interaction in aluminium nanowires are determined. The structural instabilities and the differences in the electron-phonon coupling are calculated for straight monoatomic wires, zigzag wires, and thicker straight wires. The constrained geometry of the wires generates a coupling which can be very strong or almost vanish, depending on the structural details, but which is concentrated in the longitudinal high-frequency phonons.
208

Cobalt-mediated pentadienyl/alkyne [5+2] cycloaddition reactions

Ylijoki, Kai Erik Oskar 06 1900 (has links)
A new method for the preparation of seven-membered carbocycles via cobalt-mediated [5+2] cycloaddition methodology is presented. We have demonstrated that Cp*Co(5-pentadienyl)+ systems undergo cycloaddition reactions with alkynes in a diastereocontrolled and high-yielding process. When acetylene is employed as the cycloaddition partner, unprecedented Cp*Co(2,3-cycloheptadienyl)+ complexes were isolated as the cycloaddition product under kinetic control. These allyl/olefin species were further transformed to the thermodynamic Cp*Co(5-cycloheptadienyl)+ complexes. Also described are two methods for the preparation of high-valent Co(III) 5-pentadienyl complexes, a compound class that has been under-reported in the literature. This work fills this void and provides a valuable view of the structural properties of 5-pentadienyl complexes as a function of the substitution pattern. The incorporation of tethered pronucleophiles onto the pentadienyl ligand allowed the preparation of fused bicyclic structures of relevance to natural product synthesis. Both conjugated and unconjugated cycloheptadiene species were prepared, made possible via the differing cycloheptadienyl complex hapticity. The oxidative decomplexation of the organic products is also described. Initial steps towards a divergent pronucleophile-bearing pentadienyl synthesis were also undertaken. The mechanism and structure/reactivity relationships for the [5+2] cycloaddition process were studied via density functional theory calculations. These investigations revealed the existence of several convergent reaction pathways on the potential energy surface, and provided a new rationale for the 2,35 isomerization, thereby explaining the low activation barrier for the isomerization of 2-butyne cycloadducts. Of interest is the elucidation of a radical-type pathway, calculated to be of high energy for the Cp* ligand system, yet energetically competitive in the Cp complex reaction manifold. Further, computations on the Cp system demonstrate a potentially viable pathway on the triplet energy surface, suggesting spin-forbidden transitions may play a role in the mechanism. These observations provide an explanation for the differing cycloaddition efficiencies in these two pentadienyl systems. Calculations also suggest that reaction chemoselectivity is determined during the rate-limiting alkyne complexation step; the energetics of this process being dominated by steric interactions between the pentadienyl substituents and the ancillary ligand.
209

Understanding the Effect of Cation and Solvation on the Structure and Reactivity of Nitrile Anions

Ziegler, Michael 09 December 2011 (has links)
This Ph.D. dissertation is focused on the investigation the structure of nitrile anion containing molecules and how the structure and reactivity of those molecules are affected by solvation and counter ion. A systematic approach was employed in this investigation, beginning with an evaluation of the accuracy of three commonly used model chemistries (Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP), all paired with the 6-31+G(d) basis set). A series of complexes of various cations with a number of explicit molecules of tetrahydrofuran (THF) and dimethyl ether (DME) were studied with these model chemistries and the results were compared, where possible, with experimental results. From this work, it was determined that the B3LYP models gave the most accurate results for the complexes in question. This work was then extended to acetonitrile anion containing complexes of solvent and cation. Based on the results of that extension, it was determined that cation size and charge density on the cation were critical factors in determining the structure of the acetonitrile anion molecule and in determining if the anion was metalated at the nitrogen or alpha-carbon position, with larger cations favoring carbon metalation and more significant deformation of the alpha-carbon from the expected sp2 hybridization. The final aspect of this dissertation was the determination of reaction coordinate energy profiles for a pair of substitution reactions involving nitrile anion containing cycloaliphatic molecules. The results of this study showed that, due to steric and kinetic factors, the axial products and transitions states associated with these reactions were favored, and that the degree of preference was kinetically controlled. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
210

Intramolecular electronic communication between dimetal units with multiple metal??al bonds

Li, Zhong 15 May 2009 (has links)
No description available.

Page generated in 0.6648 seconds