Spelling suggestions: "subject:"deployed"" "subject:"deploy""
31 |
Modelling and Manufacturing of a Composite Bi-Stable Boom for Small SatellitesHerlem, Florian January 2014 (has links)
Thin cylindrical shell structures may provide an interesting breakthrough for deployable structures for small satellites. Its bi-stable behaviour allows two different stable configurations: coiled and deployed. Several projects worldwide are using tape springs for satellites and for the SEAM project, at KTH, 1 meter long tape springs will be used for booms. This thesis investigates the energy stored inside the tape spring according to its layup configuration and the different fiber orientations. With a thickness around 0.3 mm and a length of one meter, the booms will deploy sensors with a quite low deployment speed in order to minimize the shock load during the deployment phase. A Matlab code is written to compare the stored strain energy. Another aim is to find an adequate layup all along the tape spring, it means change the fiber orientation to decrease the energy released, but also generating main manufacturing issue.
|
32 |
On Creases and Curved Links: Design Approaches for Predicting and Customizing Behaviors in Origami-Based and Developable MechanismsButler, Jared J. 03 August 2020 (has links)
This work develops models and tools to help designers address the challenges associated with designing origami-based and developable mechanisms. These models utilize strain energy, kinematics, compliant mechanisms, and graphical techniques to make the design of origami-based and developable mechanisms approachable and intuitive. Origami-based design tools are expanded through two methods. First presented is a generalized approach for identifying single-output mechanical advantage for a multiple-input compliant mechanism, such as many origami-based mechanisms. The model is used to predict the force-deflection behavior of an origami-based mechanism (Oriceps) and is verified with experimental data from magnetic actuation of the mechanism. Second is a folding technique for thick-origami, called the regional-sandwiching of compliant sheets (ReCS), which creates flat-foldable, rigid-foldable, and self-deploying thick origami-based mechanisms. The technique is used to create mountain/valley assignments for each fold about a vertex, constraining motion to a single branch of folding. Strain energy in deflected flexible members is used to enable self-deployment. Three physical models, a simple single-fold mechanism, a degree-four vertex mechanism, and a full tessellation, are presented to demonstrate the ReCS technique. Developable mechanism design is further enabled through an exploration of their feasible design space. Terminology is introduced to define the motion of developable mechanisms while interior and exterior to a developable surface. The limits of this motion are identified using defined conditions. It is shown that the more difficult of these conditions may be treated as a non-factor during the design of cylindrical developable mechanisms given certain assumptions. These limits are then applied to create a resource for designing bistable developable mechanisms (BDMs) that reach their second stable positions while exterior or interior to a cylindrical surface. A novel graphical method for identifying stable positions of linkages using a single dominant torsional spring, called the Principle of Reflection, is introduced and implemented. The results are compared with a numerical simulation of 30,000+ mechanisms to identify possible incongruencies. Two tables summarize the results as the guide for designing extramobile and intramobile BDMs. In fulfilling the research objectives, this dissertation contributes to the scientific community of origami-based and developable mechanism design approaches. As a result of this work, practitioners will be better able to approach and design complex origami-based and developable mechanisms.
|
33 |
Incorporating Stability in Deployable Origami-based Engineering ApplicationsAndrews, David Wayne 01 July 2020 (has links)
For origami-based designs to be functional, they need to be stable. Typically, stability is achieved through the introduction of exterior supports or members. This work focuses on incorporating stability into deployable origami-based engineering applications, including the development of deployable stiffeners or hard stops and generating concepts for stable origami-based systems in specific applications. Two types of deployable stiffeners are developed. Models for transcrease hard stops are presented, which can be directly implemented into origami-patterns to block motion at a specified angle. Thickness Utilizing Deployable Hard Stops (ThUDS), adapted from the transcrease hard stop models, can be implemented into thick materials for use in origami-based design. The application of self-deploying, self-locking ThUDS in an origami-based CubeSat reflectarray is shown, designed using optimization principles. Last, various multistable furniture concepts are presented, with stability incorporated into the concept design. These concepts focus on using composite wood as the base material, due to wood's abundance and commonality in furniture design.
|
34 |
Biologically Inspired Cognitive Radio Engine Model Utilizing Distributed Genetic Algorithms for Secure and Robust Wireless Communications and NetworkingRieser, Christian James 22 October 2004 (has links)
This research focuses on developing a cognitive radio that could operate reliably in unforeseen communications environments like those faced by the disaster and emergency response communities. Cognitive radios may also offer the potential to open up secondary or complimentary spectrum markets, effectively easing the perceived spectrum crunch while providing new competitive wireless services to the consumer. A structure and process for embedding cognition in a radio is presented, including discussion of how the mechanism was derived from the human learning process and mapped to a mathematical formalism called the BioCR. Results from the implementation and testing of the model in a hardware test bed and simulation test bench are presented, with a focus on rapidly deployable disaster communications. Research contributions include developing a biologically inspired model of cognition in a radio architecture, proposing that genetic algorithm operations could be used to realize this model, developing an algorithmic framework to realize the cognition mechanism, developing a cognitive radio simulation toolset for evaluating the behavior the cognitive engine, and using this toolset to analyze the cognitive engineà Âs performance in different operational scenarios. Specifically, this research proposes and details how the chaotic meta-knowledge search, optimization, and machine learning properties of distributed genetic algorithm operations could be used to map this model to a computable mathematical framework in conjunction with dynamic multi-stage distributed memories. The system formalism is contrasted with existing cognitive radio approaches, including traditionally brittle artificial intelligence approaches. The cognitive engine architecture and algorithmic framework is developed and introduced, including the Wireless Channel Genetic Algorithm (WCGA), Wireless System Genetic Algorithm (WSGA), and Cognitive System Monitor (CSM). Experimental results show that the cognitive engine finds the best tradeoff between a host radio's operational parameters in changing wireless conditions, while the baseline adaptive controller only increases or decreases its data rate based on a threshold, often wasting usable bandwidth or excess power when it is not needed due its inability to learn. Limitations of this approach include some situations where the engine did not respond properly due to sensitivity in algorithm parameters, exhibiting ghosting of answers, bouncing back and forth between solutions. Future research could be pursued to probe the limits of the engineà Âs operation and investigate opportunities for improvement, including how best to configure the genetic algorithms and engine mathematics to avoid engine solution errors. Future research also could include extending the cognitive engine to a cognitive radio network and investigating implications for secure communications. / Ph. D.
|
35 |
Development of an Origami Inspired Composite Deployable Structure Utilizing Compliant Joints as Surrogate FoldsSmith, Samuel Porter 15 September 2021 (has links) (PDF)
This work presents the design and construction of a self-deployable, self-stiffening,and retractable (SDSR) space array from carbon fiber reinforced polymers (CFRP’s) and a working prototype is demonstrated. The effort required developing principles for the design of high-strain composite flexural joints and their integration into angled composite panels. Designing LET arrays in angled panels is explored. Analysis of simple composite LET joints is presented for two degrees of freedom. Validation of the composite LET modeling is sought through numerical methods and empirical testing. Testing of several composite LET joint specimens is conducted and the results are reported. Results indicate that (while not as compact as their isotropic material counterparts) composite laminates can successfully use LET joints as surrogate folds.
|
36 |
Characterizing Behaviors and Functions of Joints for Design of Origami-Based Mechanical SystemsBrown, Nathan Chandler 14 September 2021 (has links) (PDF)
This thesis addresses a number of challenges designers face when designing deployable origami-based arrays, specifically joint selection, design, and placement within an array. In deployable systems, the selection and arrangement of joint types is key to how the system functions. The kinematics and performance of an array is directly affected by joint performance. This work develops joint metrics which are then used to compare joint performances, constructing a tool designers can use when selecting joints for an origami array. While often a single type of joint is used throughout an array, this work shows how using multiple types of joints within the same array can offer benefits for motion deployment, and array stiffening.
Origami arrays are often used for their unique solutions for stowing and deploying large planar shapes. Folds, enabled through joints, within these patterns allow the arrays to fold compactly. However, it can be difficult to fully deploy arrays, particularly array designs with a high number of joints. In addition, it is a challenge to stabilize a fully deployed array from undesired re-folding. This work introduces a strain-energy storing joint that is used to deploy and stiffen foldable origami arrays, the Lenticular Lock (LentLock). Geometry of the LentLock is introduced and the deploying and stiffening performance of the joint is shown.
Folds within an origami array create the constraints that link motion between panels, and can be used to create kinematic benefits, such as creating mechanisms with a single degree-of-freedom. While many fold-constraints are required to define motion, this work shows that origami-based system contain many redundant constraints. The removal of redundant joints does not affect the motion of the array nor the observed mobility, but may decrease the likelihood of binding, simplify the overall system and decrease actuation force. This work introduces a visual and iterative approach designers can use to identify redundant constraints in origami patterns, and techniques that can be used to remove the identified redundant constraints. The presented techniques are demonstrated by removing redundant constraints from prototyped origami mechanisms.
As a result of this work, designers will be better able to approach and design deployable origami-based mechanisms.
|
37 |
Framework for Concentrated Strain Deployable TrussesMejia-Ariza, Juan Manuel 25 June 2008 (has links)
This research presents a simplified framework for the analysis of deployable trusses using the concentrated strain approach and uses it to provide key insights into the many design decisions to be made in the development of concentrated strain architectures. The framework uses Euler Column Theory to derive closed form solutions to estimate truss performance. The results are compared to a classical solution and shown to give similar results. A range of strut and hinge hierarchy choices are considered. Trusses composed of solid rods with rectangular flexures are shown to have significant axial and bending stiffness reductions due to the smaller cross-sectional areas and lower modulus of the flexures. Trusses composed of tubes are less sensitive to this because the flexure cross-sectional area does not dramatically change from that of the tube. A hinge material metric that properly weights flexure strain and modulus is presented to provide a basis for the comparison and selection of proper hinge materials. However, based on this metric, new materials with higher folding failure strain and higher modulus are needed. Finally, a concentrated strain deployable truss of solid rods was designed, manufactured, and tested. A truss performance index for column loading was used to compare this system with a distributed strain ATK-ABLE GR1 coilable boom system and an articulated ATK-ABLE SRTM boom system. It was demonstrated that the concentrated strain approach has the potential to achieve a higher linear compaction ratio and truss performance index for mass efficient deployable trusses than the distributed strain approach and the articulated approach. / Ph. D.
|
38 |
Deployable Infrastructure in Support of Science and EducationKing, Jonathan Lee 05 December 2012 (has links)
P.L.U.G. is a prototypical solution to a highly specialized design problem that emerged in support of remote biological field research in the Mahale mountains of Western Tanzania. In collaboration with researchers from the Virginia Maryland Regional College of Veterinary Medicine's (VMRCVM) Bush to Base Bioinformatics(B2B) group a team of students and faculty from the Virginia Tech School of Architecture + Design designed, constructed, tested, and deployed the mobile field laboratory which houses up to four researchers and includes clean laboratory space, living accommodation, autonomous electricity generation, and a satellite-based communications network. P.L.U.G. consists of two primary elements, a rigid enclosed laboratory and fabric super structure that are constructed using a series of functionally-complex building components that are designed to be carried and assembled by two researchers, in one day, without the use of tools. (Kaur etal. 2007) The resulting system can be mass produced and utilized in the establishment of infrastructure in remote, environmentally sensitive, and unstable environments and has implication in disaster relief housing, human heath stations, remote research, mobile educational facilities, and any other environment or event that requires rapidly deployable, self-sufficient infrastructure.
The prototype laboratory was successfully deployed during the summer of 2007 and has been field tested by the Virginia Maryland College of Veterinary Medicine (VMRCVM) Bush-2-Base Bioinformatics (B2B) research group. Currently the laboratory program exists as part of a newly developed long-term research initiative surrounding Deployable Infrastructure in Support of Science and Education (DISSed Lab) initiated by the author in response to perceived demand for such accommodation. / Master of Science
|
39 |
Optimization of an Unfurlable Space StructureSibai, Munira 04 September 2020 (has links)
Deployable structures serve a large number of space missions. They are vital since spacecraft are launched by placing them inside launch vehicle payload fairings of limited volume. Traditional spacecraft design often involves large components. These components could have power, communication, or optics applications and include booms, masts, antennas, and solar arrays. Different stowing methods are used in order to reduce the overall size of a spacecraft. Some examples of stowing methods include simple articulating, more complex origami inspired folding, telescoping, and rolling or wrapping. Wrapping of a flexible component could reduce the weight by eliminating joints and other components needed to enable some of the other mechanisms. It also is one of the most effective methods at reducing the compaction volume of the stowed deployable. In this study, a generic unfurlable structure is optimized for maximum natural frequency at its fully deployed configuration and minimal strain energy in its stowed configuration. The optimized stowed structure is then deployed in simulation. The structure consists of a rectangular panel that tightly wraps around a central cylindrical hub for release in space. It is desired to minimize elastic energy in the fully wrapped panel and hinge to ensure minimum reaction load into the spacecraft as it deploys in space, since that elastic energy stored at the stowed position transforms into kinetic energy when the panel is released and induces a moment in the connected spacecraft. It is also desired to maximize the fundamental frequency of the released panel as a surrogate for the panel having sufficient stiffness. Deployment dynamic analysis of the finite element model was run to ensure satisfactory optimization formulation and results. / Master of Science / Spacecraft, or artificial satellites, do not fly from earth to space on their own. They are launched into their orbits by placing them inside launch vehicles, also known as carrier rockets. Some parts or components of spacecraft are large and cannot fit in their designated space inside launch vehicles without being stowed into smaller volumes first. Examples of large components on spacecraft include solar arrays, which provide power to the spacecraft, and antennas, which are used on satellite for communication purposes. Many methods have been developed to stow such large components. Many of these methods involve folding about joints or hinges, whether it is done in a simple manner or by more complex designs. Moreover, components that are flexible enough could be rolled or wrapped before they are placed in launch vehicles. This method reduces the mass which the launch vehicle needs to carry, since added mass of joints is eliminated. Low mass is always desirable in space applications. Furthermore, wrapping is very effective at minimizing the volume of a component. These structures store energy inside them as they are wrapped due to the stiffness of their materials. This behavior is identical to that observed in a deformed spring. When the structures are released in space, that energy is released, and thus, they deploy and try to return to their original form. This is due to inertia, where the stored strain energy turns into kinetic energy as the structure deploys. The physical analysis of these structures, which enables their design, is complex and requires computational solutions and numerical modeling. The best design for a given problem can be found through numerical optimization. Numerical optimization uses mathematical approximations and computer programming to give the values of design parameters that would result in the best design based on specified criterion and goals. In this thesis, numerical optimization was conducted for a simple unfurlable structure. The structure consists of a thin rectangular panel that wraps tightly around a central cylinder. The cylinder and panel are connected with a hinge that is a rotational spring with some stiffness. The optimization was solved to obtain the best values for the stiffness of the hinge, the thickness of the panel, which is allowed to vary along its length, and the stiffness or elasticity of the panel's material. The goals or objective of the optimization was to ensure that the deployed panel meets stiffness requirement specified for similar space components. Those requirements are set to make certain that the spacecraft can be controlled from earth even with its large component deployed. Additionally, the second goal of the optimization was to guarantee that the unfurling panel does not have very high energy stored while it's wrapped, so that it would not cause large motion the connected spacecraft in the zero gravity environments of space. A computer simulation was run with the resulting hinge stiffness and panel elasticity and thickness values with the cylinder and four panels connected to a structure representing a spacecraft. The simulation results and deployment animation were assessed to confirm that desired results were achieved.
|
40 |
Membrane Hinges for Deployable SystemsSkinner, C. Mitchel 12 July 2024 (has links) (PDF)
Origami-inspired and deployable technology has become increasingly common in a variety of applications including satellite and antenna designs for space applications. The drive to utilize ultra-thin materials in the design of these deployable space structures has led to the development of membrane hinges. Membrane hinges show promise as an effective surrogate fold because of their potential advantages including requiring minimal volume and mass, allowing for small bending radii, and functioning without lubricant. Two challenges associated with membrane hinges include reliability after repeated cyclic loading and predictability of a large deployable with radially-unconstrained membrane hinges. The research presented includes the cyclic testing and a design analysis of membrane hinges in deployable systems. Additionally, demonstrations of membrane hinges in a variety of applications are included.
|
Page generated in 2.2444 seconds