• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topological Conjugacies Between Cellular Automata

Epperlein, Jeremias 19 December 2017 (has links) (PDF)
We study cellular automata as discrete dynamical systems and in particular investigate under which conditions two cellular automata are topologically conjugate. Based on work of McKinsey, Tarski, Pierce and Head we introduce derivative algebras to study the topological structure of sofic shifts in dimension one. This allows us to classify periodic cellular automata on sofic shifts up to topological conjugacy based on the structure of their periodic points. We also get new conjugacy invariants in the general case. Based on a construction by Hanf and Halmos, we construct a pair of non-homeomorphic subshifts whose disjoint sums with themselves are homeomorphic. From this we can construct two cellular automata on homeomorphic state spaces for which all points have minimal period two, which are, however, not topologically conjugate. We apply our methods to classify the 256 elementary cellular automata with radius one over the binary alphabet up to topological conjugacy. By means of linear algebra over the field with two elements and identities between Fibonacci-polynomials we show that every conjugacy between rule 90 and rule 150 cannot have only a finite number of local rules. Finally, we look at the sequences of finite dynamical systems obtained by restricting cellular automata to spatially periodic points. If these sequences are termwise conjugate, we call the cellular automata conjugate on all tori. We then study the invariants under this notion of isomorphism. By means of an appropriately defined entropy, we can show that surjectivity is such an invariant.
2

Topological Conjugacies Between Cellular Automata

Epperlein, Jeremias 21 April 2017 (has links)
We study cellular automata as discrete dynamical systems and in particular investigate under which conditions two cellular automata are topologically conjugate. Based on work of McKinsey, Tarski, Pierce and Head we introduce derivative algebras to study the topological structure of sofic shifts in dimension one. This allows us to classify periodic cellular automata on sofic shifts up to topological conjugacy based on the structure of their periodic points. We also get new conjugacy invariants in the general case. Based on a construction by Hanf and Halmos, we construct a pair of non-homeomorphic subshifts whose disjoint sums with themselves are homeomorphic. From this we can construct two cellular automata on homeomorphic state spaces for which all points have minimal period two, which are, however, not topologically conjugate. We apply our methods to classify the 256 elementary cellular automata with radius one over the binary alphabet up to topological conjugacy. By means of linear algebra over the field with two elements and identities between Fibonacci-polynomials we show that every conjugacy between rule 90 and rule 150 cannot have only a finite number of local rules. Finally, we look at the sequences of finite dynamical systems obtained by restricting cellular automata to spatially periodic points. If these sequences are termwise conjugate, we call the cellular automata conjugate on all tori. We then study the invariants under this notion of isomorphism. By means of an appropriately defined entropy, we can show that surjectivity is such an invariant.

Page generated in 0.0569 seconds