• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Testing of Interposer-Based 2.5D Integrated Circuits

Wang, Ran January 2016 (has links)
<p>The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.</p><p>At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.</p><p>The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.</p><p>In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.</p><p>To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.</p><p>In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.</p><p>Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.</p><p>In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.</p> / Dissertation
2

A Comprehensive Test and Diagnostic Strategy for TCAMs

Wright, Derek January 2005 (has links)
Content addressable memories (CAMs) are gaining popularity with computer networks. Testing costs of CAMs are extremely high owing to their unique configuration. In this thesis, a fault analysis is carried out on an industrial ternary CAM (TCAM) design, and search path test algorithms are designed. The proposed algorithms are able to test the TCAM array, multiple-match resolver (MMR), and match address encoder (MAE). The tests represent a 6x decrease in test complexity compared to existing algorithms, while dramatically improving fault coverage.
3

A Comprehensive Test and Diagnostic Strategy for TCAMs

Wright, Derek January 2005 (has links)
Content addressable memories (CAMs) are gaining popularity with computer networks. Testing costs of CAMs are extremely high owing to their unique configuration. In this thesis, a fault analysis is carried out on an industrial ternary CAM (TCAM) design, and search path test algorithms are designed. The proposed algorithms are able to test the TCAM array, multiple-match resolver (MMR), and match address encoder (MAE). The tests represent a 6x decrease in test complexity compared to existing algorithms, while dramatically improving fault coverage.
4

Cost effective tests for high speed I/O subsystems

Chun, Ji Hwan 01 February 2012 (has links)
The growing demand for high performance systems in modern computing technology drives the development of advanced and high speed designs in I/O structures. Due to their data rate and architecture, however, testing of the high speed serial interfaces becomes more expensive when using conventional test methods. In order to alleviate the test cost issue, a loopback test scheme has been widely adopted. To assess the margin of the signal eye in the loopback configuration, the eye margin is purposely reduced by additional devices on the loopback path or using design for testability (DFT) features such as timing and voltage margining. Although the loopback test scheme successfully reduces the test cost by decoupling the dependency of external test equipment, it has robustness issues such as a fault masking issue and a non-ideality problem of margining circuits. The focus of this dissertation is to propose new methods to resolve the known issues in the loopback test mode. The fault masking issue in a loopback pair of analog to digital and digital to analog converters (ADC and DAC) which can be found in pulse amplitude modulation (PAM) signaling schemes is resolved using a proposed algorithm which separates the characteristics of the ADC and the DAC from a combined loopback response. The non-ideality problem of margining circuit is resolved using a proposed method which utilizes a random jitter injection technique. Using the injected random jitter, the jitter distribution is sampled by undersampling and margining, which provides the nonlinearity information using the proposed algorithm. Since the proposed method requires a random jitter source on the load board, an alternative solution is proposed which uses an intrinsic jitter profile and a sliding window search algorithm to characterize the nonlinearities. The sliding search algorithm was implemented in a low cost high volume manufacturing (HVM) tester to assess feasibility and validity of the proposed technique. The proposed methods are compatible with the existing loopback test scheme and require a minimal area and design overhead, hence they provide cost effective ways to enhance the robustness of the loopback test scheme. / text
5

Optimizing Test Pattern Generation Using Top-Off ATPG Methodology for Stuck–AT, Transition and Small Delay Defect Faults

Gill, Arjun 03 October 2013 (has links)
The ever increasing complexity and size of digital circuits complemented by Deep Sub Micron (DSM) technology trends today pose challenges to the efficient Design For Test (DFT) methodologies. Innovation is required not only in designing the digital circuits, but also in automatic test pattern generation (ATPG) to ensure that the pattern set screens all the targeted faults while still complying with the Automatic Test Equipment (ATE) memory constraints. DSM technology trends push the requirements of ATPG to not only include the conventional static defects but also to include test patterns for dynamic defects. The current industry practices consider test pattern generation for transition faults to screen dynamic defects. It has been observed that just screening for transition faults alone is not sufficient in light of the continuing DSM technology trends. Shrinking technology nodes have pushed DFT engineers to include Small Delay Defect (SDD) test patterns in the production flow. The current industry standard ATPG tools are evolving and SDD ATPG is not the most economical option in terms of both test generation CPU time and pattern volume. New techniques must be explored in order to ensure that a quality test pattern set can be generated which includes patterns for stuck-at, transition and SDD faults, all the while ensuring that the pattern volume remains economical. This thesis explores the use of a “Top-Off” ATPG methodology to generate an optimal test pattern set which can effectively screen the required fault models while containing the pattern volume within a reasonable limit.
6

Auto test de convertisseurs de signal de type pipeline / Pipeline ADC Built-In Self Test

Renaud, Guillaume 29 November 2016 (has links)
Cette thèse vise l’étude de nouvelles architectures d’auto test pour les convertisseurs de type pipeline. En production, les convertisseurs sont testés en fonctionnement statique et dynamique. Les techniques de test statique de linéarité sont les techniques les plus coûteuses durant la phase de production. La mesure des performances statiques utilise un stimulus à haute linéarité et très basse fréquence et la méthode de l’histogramme, nécessitant la collecte d’un grand nombre d’échantillons en sortie afin de moyenner le bruit. Ainsi, la quantité de données nécessaire augmente exponentiellement avec la résolution du CAN sous test. Pour cette raison, la réduction du temps de test des CANs est un domaine de recherche qui attire de plus en plus d’attention. Récemment, des nouvelles solutions ont été mises au point pour réduire de façon importante le temps de test, mais aucune solution d’auto test considérant un générateur de signal de haute résolution en combinaison avec une technique d'analyse intégrée, réduisant considérablement la quantité de données, n’a encore été développée. Dans le cadre de cette thèse, on envisage l’étude de techniques d’auto test statique pour ce type de convertisseurs. En particulier, cette thèse présente un générateur de stimulus de test intégré à haute linéarité et une technique modifiée de servo-loop qui, en combinaison avec un algorithme de test de linéarité avec réduction de codes, conduit à la définition d'une stratégie efficace et précise de test intégré pour les CANs de type pipeline. La thèse inclut la validation expérimentale des techniques proposées, en coopération avec ST Microelectronics, Grenoble. / This PhD thesis is aimed at exploring new Built-In-Self-Test (BIST) techniques for static linearity characterization of pipeline ADCs. During the production phase, the static and dynamic performances of the ADCs are tested. Static linearity test techniques are one of the more expensive test procedures that are performed at production line. The measurement of the static linearity performance requires the application of a low frequency high linearity stimulus and the collection of a high volume of output samples for noise averaging, usually using a histogram-based test setup. Thus, as the resolution of state-of-the-art ADCs increases, test time for static linearity characterization increases exponentially. For this reason, the reduction of the ADC test time is a hot topic that has gained an increasing interest over the past years. New techniques have recently been proposed to effectively reduce test time, but no BIST technique has yet been developed that considers a high resolution signal generator in combination with an on-chip analysis technique that dramatically reduces the amount of data. In this thesis, static linearity BIST techniques will be investigated for pipeline ADCs. In particular, this thesis presents a novel high-linearity on-chip test stimulus generator and a modified servo-loop technique that, in combination with reduced-code linearity test algorithms, lead to the definition of an efficient and accurate BIST strategy for pipeline ADCs. The work includes the experimental validation of the proposed techniques in collaboration with STMicroelectronics, Grenoble.
7

DFT Solutions for Automated Test and Calibration of Forthcoming RF Integrated Transceivers

January 2018 (has links)
abstract: As integrated technologies are scaling down, there is an increasing trend in the process,voltage and temperature (PVT) variations of highly integrated RF systems. Accounting for these variations during the design phase requires tremendous amount of time for prediction of RF performance and optimizing it accordingly. Thus, there is an increasing gap between the need to relax the RF performance requirements at the design phase for rapid development and the need to provide high performance and low cost RF circuits that function with PVT variations. No matter how care- fully designed, RF integrated circuits (ICs) manufactured with advanced technology nodes necessitate lengthy post-production calibration and test cycles with expensive RF test instruments. Hence design-for-test (DFT) is proposed for low-cost and fast measurement of performance parameters during both post-production and in-eld op- eration. For example, built-in self-test (BIST) is a DFT solution for low-cost on-chip measurement of RF performance parameters. In this dissertation, three aspects of automated test and calibration, including DFT mathematical model, BIST hardware and built-in calibration are covered for RF front-end blocks. First, the theoretical foundation of a post-production test of RF integrated phased array antennas is proposed by developing the mathematical model to measure gain and phase mismatches between antenna elements without any electrical contact. The proposed technique is fast, cost-efficient and uses near-field measurement of radiated power from antennas hence, it requires single test setup, it has easy implementation and it is short in time which makes it viable for industrialized high volume integrated IC production test. Second, a BIST model intended for the characterization of I/Q offset, gain and phase mismatch of IQ transmitters without relying on external equipment is intro- duced. The proposed BIST method is based on on-chip amplitude measurement as in prior works however,here the variations in the BIST circuit do not affect the target parameter estimation accuracy since measurements are designed to be relative. The BIST circuit is implemented in 130nm technology and can be used for post-production and in-field calibration. Third, a programmable low noise amplifier (LNA) is proposed which is adaptable to different application scenarios depending on the specification requirements. Its performance is optimized with regards to required specifications e.g. distance, power consumption, BER, data rate, etc.The statistical modeling is used to capture the correlations among measured performance parameters and calibration modes for fast adaptation. Machine learning technique is used to capture these non-linear correlations and build the probability distribution of a target parameter based on measurement results of the correlated parameters. The proposed concept is demonstrated by embedding built-in tuning knobs in LNA design in 130nm technology. The tuning knobs are carefully designed to provide independent combinations of important per- formance parameters such as gain and linearity. Minimum number of switches are used to provide the desired tuning range without a need for an external analog input. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
8

Diagnosis Of VLSI circuit defects: defects in scan chain and circuit logic

Tang, Xun 01 December 2010 (has links)
Given a logic circuit that fails a test, diagnosis is the process of narrowing down the possible locations of the defects. Diagnosis to locate defects in VLSI circuits has become very important during the yield ramp up process, especially for 90 nm and below technologies where physical failure analysis machines become less successful due to reduced defect visibility by the smaller feature size and larger leakage currents. Successful defect isolation relies heavily on the guidance from fault diagnosis and will depend even more for the future technologies. To assist a designer or a failure analysis engineer, the diagnosis tool tries to identify the possible locations of the failure effectively and quickly. While many defects reside in the logic part of a chip, defects in scan chains have become more and more common recently as typically 30%-50% logic gates impact the operation of scan chains in a scan design. Logic diagnosis and scan chain diagnosis are the two main fields of diagnosis research. The quality of diagnosis directly impacts the time-to-market and the total product cost. Volume diagnosis with statistical learning is important to discover systematic defects. An accurate diagnosis tool is required to diagnose large numbers of failing devices to aid statistical yield learning. In this work, we propose techniques to improve diagnosis accuracy and resolution, techniques to improve run-time performance. We consider the problem of determining the location of defects in scan chains and logic. We investigate a method to improve the diagnosability of production compressed test patterns for multiple scan chain failures. Then a method to generate special diagnostic patterns for scan chain failures was proposed. The method tries to generate a complete test pattern set to pinpoint the exact faulty scan cell when flush tests tell which scan chain is faulty. Next we studied the problem of diagnosis of multiple faults in the logic of circuits. First we propose a method to diagnose multiple practical physical defects using simple logic fault models. At last we propose a method based on fault-tuple equivalence trees to further improve diagnosis quality.
9

Low-cost and Robust Countermeasures against Counterfeit Integrated Circuits

Zheng, Yu 09 February 2015 (has links)
No description available.
10

Design for Testability Techniques to Optimize VLSI Test Cost

Donglikar, Swapneel B. 28 July 2009 (has links)
High test data volume and long test application time are two major concerns for testing scan based circuits. The Illinois Scan (ILS) architecture has been shown to be effective in addressing both these issues. The ILS achieves a high degree of test data compression thereby reducing both the test data volume and test application time. The degree of test data volume reduction depends on the fault coverage achievable in the broadcast mode. However, the fault coverage achieved in the broadcast mode of ILS architecture depends on the actual configuration of individual scan chains, i.e., the number of chains and the mapping of the individual flip-flops of the circuit to the respective scan chain positions. Current methods for constructing scan chains in ILS are either ad-hoc or use test pattern information from an a-priori automatic test pattern generation (ATPG) run. In this thesis, we present novel low cost techniques to construct ILS scan configuration for a given design. These techniques efficiently utilize the circuit topology information and try to optimize the flip-flop assignment to a scan chain location without much compromise in the fault coverage in the broadcast mode. Thus, they eliminate the need of an a-priori ATPG run or any test set information. In addition, we also propose a new scan architecture which combines the broadcast mode of ILS and Random Access Scan architecture to enable further test volume reduction on and above effectively configured conventional ILS architecture using the aforementioned heuristics with reasonable area overhead. Experimental results on the ISCAS'89 benchmark circuits show that the proposed ILS configuration methods can achieve on an average 5% more fault coverage in the broadcast mode and on average 15% more test data volume and test application time reduction than existing methods. The proposed new architecture achieves, on an average, 9% and 33% additional test data volume and test application time reduction respectively on top of our proposed ILS configuration heuristics. / Master of Science

Page generated in 0.1102 seconds