• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A method for the design and development of multimedia documents

Morris, Stephen John January 1996 (has links)
No description available.
2

Integrating active thermal mass strategies in responsive buildings

Warwick, David James January 2010 (has links)
Thermal mass can be used in buildings to reduce the need for and dependence on mechanical heating and cooling systems whilst maintaining environmental comfort. Active thermal mass strategies further enhance the performance of thermal mass through integration with the Heating, Ventilation and Air Conditioning (HVAC) systems. For the design of new buildings to include active thermal mass strategies, experience from operational projects and design guidelines are normally used by engineers. However, dynamic thermal modelling is required in most cases to accurately determine the performance of its integration with the environmental systems of the building. Design decisions made in the preliminary stages of the design of a building often determine its final thermal characteristics. At this stage, reasons for not integrating active thermal mass strategies include the lack of knowledge about the performance of previous buildings and the time and resources required to carry out detailed modelling. In this research project a commercially available dynamic building thermal program has been used to construct models for active thermal mass strategies and compare the results with monitored temperatures in buildings incorporating the strategies in the UK. Four active thermal mass strategies are considered (a) hollow core slabs (HCS), (b) floor void with mass, (FVWM) (c) earth-to-air heat exchanger (ETAHE) and (d) thermal labyrinth (TL). The operational strategies and monitoring are presented and their modelling is described in terms of geometrical configuration and input parameters. The modelling results are compared with the measured parameters successfully. Using the calibrated model, an excel based tool (TMAir) was then developed that can be used at the concept design stages of a typical office building to determine the benefits of integrating an active thermal mass strategy. Key design parameters were identified for each system. These parameters can be split into two categories; fixed parameters and user selected parameters. The fixed parameters are pre-selected for the design tool and have to be a fair representation of the projects that the tool will be used for. The user selected parameters are chosen by the user to represent the way the building will be used, and to look at the effect of key design decisions on the performance of the building. The tool has an easy-to-use interface which allows direct comparison of the different active thermal mass strategies together with the effects of changing key design parameters. Results are presented in terms of thermal comfort and energy consumption. TMAir has then been used to carry out a series of parametric analyses. These have concluded the following:  There is only a benefit in integrating a HCS strategy when night cooling is introduced  There is no benefit in integrating a FVWM strategy when only one parameter is improved  An ETAHE and TL strategy will always provide a benefit, although the benefits are greater when night cooling is introduced, solar and internal gains are reduced and when the air change rate is increased. When all of the parametric improvements are applied to the test room the results show that all of the active thermal mass strategies can provide a reduction in annual overheating hours when compared to the Standard Strategy. Only a small benefit is found for the FVWM Strategy, however around a 25% reduction is found for the HCS Strategy, over a 50% reduction for the TL Strategy and nearly a 75% reduction for the ETAHE Strategy. This demonstrates the importance of applying a low energy, passive approach when considering the application of active thermal mass strategies. The key results have shown that when comfort cooling is provided, adding a HCS or FVWM strategy always results in an increase in the annual cooling load. This is as a result of the temperature of the air being supplied into the cores or floor void being higher than that of the internal surface temperatures of the cores or void. This results in the supply air being heated, and less cooling provided to the test room per cooling energy delivered. Due to the pre cooling effect of the ETAHE and TL strategies, these strategies always result in a reduction in the annual cooling load. The key results have shown that the annual heating load is reduced by a small amount for the HCS and FVWM strategies unless the solar gains or internal gains are reduced, whereas the ETAHE and TL strategies always result in a around a 10% reduction in annual heating load as a result of the preheating effect these strategies have on the supply air.
3

One Light to fit them all. Rethinking Luminaire Design, Reusability - Re•adjustability

Skouros, Athanasios January 2023 (has links)
A luminaire’s primary purpose is to provide visibility into a space, but also to serve as an aesthetic object for it. When switched off, luminaires maintain their presence as forms and when switched on they transform places by creating or vanishing different shadows. For years luminaire designers are trying to tame the light emitted from the light bulb, an archetypal component of a great literal and metaphorical significance for the human his-tory. The era of LED’s sets no limits of light source forms, intensity, color temperature, lighting color or color rendering index. Space is now the primal factor and the luminaire forms and adjusts around it. By examining the connection between luminaires and space, functionalism and how great designers approached the topic, a luminaire design tool will be explored connecting past, present and possible future technology advancement. With the above tool, a prototype model will be created with the intention to experiment with adjustability and adaptability into space. The main goal will be the re-search of a primal form for the design tool that serves as a multipurpose solution while retaining high quality levels. Well-being and creativity as well as responsible consumption and production are connected with the de-sign process.
4

A design tool for a distributed real-time control system

Staron, Raymond John, Jr. January 1993 (has links)
No description available.
5

THE FUTURE OF ANTHROPOMETRICS AND ERGONOMICS IN PRODUCT DEVELOPMENT

DHURU, YASHODHAN H. 22 May 2002 (has links)
No description available.
6

Incremental Design Techniques with Non-Preemptive Refinement for Million-Gate FPGAs

Ma, Jing 22 January 2003 (has links)
This dissertation presents a Field Programmable Gate Array (FPGA) design methodology that can be used to shorten the FPGA design-and-debug cycle, especially as gate counts increase to many millions. Core-based incremental placement algorithms, in conjunction with fast interactive routing, are investigated to reduce the design processing time by distinguishing the changes between design iterations and reprocessing only the changed blocks without affecting the remaining part of the design. Different from other incremental placement algorithms, this tool provides the function not only to handle small modifications; it can also incrementally place a large design from scratch at a rapid rate. Incremental approaches are inherently greedy techniques, but when combined with a background refinement thread, the incremental approach offers the instant gratification that designers expect, while preserving the fidelity attained through batch-oriented programs. An incremental FPGA design tool has been developed, based on the incremental placement algorithm and its background refiner. Design applications with logical gate sizes varying from tens of thousands to approximately one million are built to evaluate the execution of the algorithms and the design tool. The results show that this incremental design tool is two orders of magnitude faster than the competing approaches such as the Xilinx M3 tools without sacrificing much quality. The tool presented places designs at the speed of 700,000 system gates per second. The fast processing speed and user-interactive property make the incremental design tool potentially useful for prototype developing, system debugging and modular testing in million-gate FPGA designs. / Ph. D.
7

Discovery of a Novel Microalgal Strain Scenedesmus Sp. A6 and Exploration of Its Potential as a Microbial Cell Factory

Guimaraes Braga da Silva, Pedro Ivo 14 August 2018 (has links)
Microalgae are photosynthetic organisms considered to be one of the most promising high-value chemicals and biofuel-producing organisms. However, there are several challenges for the widespread implementation of industrial processes using microalgae. The work presented in this dissertation proposes solutions to the different challenges involving the use of microalgae as microbial cell factories. To investigate the application of anaerobic digestion as a way to generate nutrients for microbial growth, salmon offal was used as substrate for anaerobic digestion, and soil from a flooded run-off pond on the Virginia Tech campus in Blacksburg, VA. A fast reduction in volatile solids and the short-chain fatty acid production profile is favorable for the growth of microalgae. A novel algae strain Scenedesmus sp. A6 was isolated from a decorative waterfountain in a hotel in Madison, IN. Mixotrophic growth trials were conducted using wastewater from the salmon offal digestion, that demostrated the A6 isolate grows six times faster in the wastewater then autotrophically. Bioassays of ethanolic cell extracts of A6 cultures demonstrated antimicrobial activity against E. coli cells at concentrations above 50 µg/ml. Genome sequencing and assembly revealed multiple copies of genes involved with acetate and ammonia metabolism, and several genes involved with secondary metabolite synthesis. An alternative to the high capital investment of photobioreactors for the cultivation of microalgae is the use of open-source and open-hardware bioreactor controller. Here, the concept of an open-hardwate bioreactor control called ``BioBrain'' is introduced. The BioBrain device is based on the Arduino Mega micro-controller board, and is capable of monitoring and controlling culture conditions during simple strain characterization studies, with an estimated construction cost of less than $800 USD. Finally, a new primer design tool for the ligation-independant cloning technique 𝜆-PCR was developed called lambdaPrimeR. The contributions of this work are the discovery and development of different tools that can overcome the challenges of the use of microalgae as microbial cell factories in industrial processes. / Ph. D. / Microalgae are single-celled organisms capable of photosynthesis and have the potential to revolutionize fuel and high-value chemical production. However, the high process costs involving the cultivation and biomass harvesting of these organisms limits the number of industrial applications of microalgae. Therefore, reduction of the overall costs of any process involving microalgae is vital for the widespread use of these organisms in industry. On this dissertation, I explore different approaches to tackle the challenges of using microalgae as a high-value chemicals cell factories. First, the use of anaerobic digestion of salmon offal to generate low-cost nutrients for algae growth is successfully demonstrated, with the discovery of a novel algae isolate Scenedesmus sp. A6, capable of very robust growth on the anaerobic digestion wastewater. Further characterization of this novel isolate showed that it has antimicrobial activity against E. coli cells. Therefore, the Scenedesmus sp. A6 isolate has the potential to be used as a high-value chemical cell factory. Reduction in equipment and instrumentation costs was also achieved by the design and construction of an open-hardware and open-source bioreactor controller device called the “BioBrain”, and a low-cost modular bubble column photobioreactor called “The Big Large Tube”. Together, these two devices represent a significant reduction in equipment costs for the cultivation of microalgae. Finally, an open-source Bioinformatics tool called “lambdaPrimeR” was developed to facilitate the use of a novel Genetic Engineering technique called λ-PCR, that has the potential to make genetic engineering of microalgae much easier.
8

Automation of crochet technology and development of a prototype machine for the production of complex-shaped textiles

Storck, Jan Lukas 26 March 2024 (has links)
Aufgrund der Klimakrise und der Notwendigkeit CO2-Emissionen zu reduzieren, ist in Zukunft mit einer steigenden Nachfrage an Leichtbaumaterialien wie textilverstärkten Verbundwerkstoffen zu rechnen. Aufgrund steigender Rohstoff- und Energiekosten verspricht der Einsatz von endkonturnahen Verbundwerkstoffen eine Reduktion der Herstellungskosten und des Abfalls. Herkömmliche Textiltechnologien sind nur begrenzt in der Lage die erforderlichen komplex geformten Textilien herzustellen. Um dieses Problem durch den Einsatz alternativer, noch nicht industriell etablierter Technologien zu lösen, beschäftigt sich diese Arbeit ausführlich mit der Entwicklung einer Häkelmaschine sowie der Untersuchung entsprechender Textilien. Häkeln ist eine maschenbildende Technologie, bei der im Gegensatz zum Stricken die Schlaufen, die eine Masche bilden, sowohl vertikal als auch horizontal aus zuvor gebildeten Maschen entspringen. Mit dem vielseitigen Häkeln ist es insbesondere möglich, komplexe dreidimensionale (3D) Formen zu erzeugen, da an jeder beliebigen Stelle eines Textils neue Maschen gebildet werden können. Bisherige Häkelmaschinenansätze sind unzureichend und bezüglich ihrer Skalierbarkeit zu einer industriell einsetzbaren Maschine stark eingeschränkt. Industriell etablierte Maschinen, die Häkelmaschinen genannt werden, sind in ihrer Bezeichnung irreführend, da es sich um Wirkmaschinen handelt, die nur grob die Häkelstruktur nachahmen, aber keine echten Häkelmaschen bilden können. Die hier entwickelte und patentierte Häkelmaschine namens Crochet Automaton (CroMat) ermöglicht erstmals die automatisierte Herstellung von Luftmaschen, Kettmaschen, festen Maschen, halben Stäbchen, Übergängen der Maschenreihen, Zunahmen sowie Abnahmen und auch anderen Operationen nach dem Prinzip des Flachhäkelns auf Basis einer Luftmaschenreihe. Darüber hinaus können neue Maschen durch ein manuelles Umhängen des produzierten Textils an nahezu beliebigen Stellen gebildet werden. Damit können komplex geformte 3D-Textilien entsprechend den Vorteilen des Häkelns hergestellt werden. Mit dem entwickelten CroMat-Prototyp lassen sich Formen herstellen, die für endkonturnahe Faserverbundwerkstoffe wie bspw. Doppel-T-Träger potenziell geeignet sind. Durch ein Aufhängen verschiedener Maschenreihen oder Textilien auf denselben Nadeln der Maschine ist es ebenfalls möglich diese mit dem Häkeln einer verbindenden Reihe zu fügen. Neben dem mechatronischen Prototyp mit zehn Achsen wird das weltweit erste Software-Tool für den Entwurf von maschinell gehäkelten Textilien entwickelt. Es beinhaltet eine Fehlerüberprüfung, die automatische Generierung des G-Codes für die Maschinensteuerung und eine Vorschau der entworfenen Textilien. Neben einer grafischen Benutzeroberfläche mit standardisierten Häkelsymbolen wird auch die Möglichkeit zur automatischen Generierung der Häkelstruktur entsprechend der Form eines zweidimensionalen (2D) Polygons geboten. Für die Vorschau wurde das erste Topologie-basierte Modellierungs-Framework für maschinell herstellbare Häkelstrukturen entwickelt. Eine ähnliche Modellierung wurde für manuell gehäkelte Stoffe entwickelt, die sich von den maschinell hergestellten nur darin unterscheiden, dass der Stoff nach jeder Reihe gewendet wird und somit die Maschen von verschiedenen Seiten aus gebildet werden. Beide Modellarten können als Grundlage für simulative Untersuchungen mit der Finite-Elemente-Methode (FEM) verwendet werden, die in dieser Arbeit zum ersten Mal zur Simulation von gehäkelten Textilien eingesetzt wurde. Darüber hinaus wurden erstmals die Zugeigenschaften von manuell gehäkelten Textilien systematisch untersucht und die Eigenschaften der ersten Faserverbundwerkstoffe mit gehäkelten Textilien erforscht. Gehäkelte Textilien (und entsprechende Verbundstoffe) haben grundsätzlich ähnliche Eigenschaften wie gestrickte Textilien, können aber tendenziell höheren Kräften standhalten. Zusammen mit den Formgebungsmöglichkeiten ist die CroMat-Häkelmaschine generell vielversprechend für die Automatisierung des Häkelns und insbesondere für die zukünftige Produktion von endkonturnahen Faserverbundwerkstoffen.:1 Introduction 1 1.1 Motivation 1 1.2 Aim 2 1.3 Work structure 3 2 Technical and scientific background 4 2.1 Crochet 4 2.1.1 Technique and stitch formation 5 2.1.2 Crocheting a fabric 8 2.1.3 Applications of crochet 11 2.1.4 Research overview on crochet 11 2.2 Knitting machines 15 2.2.1 Weft knitting 16 2.2.2 Warp knitting 19 2.2.3 Crochet gallon machines 21 2.3 Existing crochet machine approaches 23 2.3.1 First approach to automate crochet 23 2.3.2 Circular crochet machine approach 25 2.3.3 Crocheting with a robotic arm 27 2.3.4 Further attempts to automate crocheting 29 2.4 Rapid prototyping 30 2.4.1 Development approach 30 2.4.2 3D printing 31 2.5 Electric motors 33 2.5.1 Stepper 33 2.5.2 Servo motors 34 2.5.3 G-code 35 2.6 Textile composites 37 2.6.1 Composite production 37 2.6.2 Near net-shaped composites 38 3 Crochet machine development 39 3.1 CroMat innovation process 39 3.1.1 Development phases 39 3.1.2 Analyzing the first crochet machine approach 41 3.1.3 Definition of crochet machine prototype requirements 43 3.1.4 Crochet needle insertion process 47 3.1.5 Suspending stitches on auxiliary needles 55 3.1.6 Yarn guide and patent 57 3.2 Improvements beyond the patent 60 3.2.1 Analyzing the yarn feeding problem 60 3.2.2 Systematic identification of possible solutions 61 3.2.3 Implementation of the most suited solution 64 3.3 Automated crochet stitch formation 67 3.3.1 Initial situation 67 3.3.2 Slip stitch 68 3.3.3 Single crochet 71 3.3.4 Half double crochet 73 3.3.5 Turn 75 3.3.6 Chain stitch and skipping a stitch within a course 77 3.3.7 Increase stitches 79 3.3.8 Decrease stitches 82 3.3.9 Further methods for changing the fabric’s width 84 3.3.10 More complex stitches 87 3.4 Technical implementation of CroMat prototype 89 3.4.1 CroMat machine overview 89 3.4.2 Auxiliary needles 94 3.4.3 Crochet needle 100 3.4.4 Yarn guide 106 3.4.5 Stress on yarn and machine elements 109 3.4.6 Yarn tension 115 3.4.7 Firmware and motor control 117 3.5 Crocheting with the CroMat prototype 120 3.5.1 Producing an exemplary crocheted fabric 120 3.5.2 Movements for SC formation 122 3.6 Development of CroMat crochet design tool 125 3.6.1 Tool overview 125 3.6.2 User interface 126 3.6.3 Error checking 129 3.6.4 Preview of the fabric 130 3.6.5 Generating G-code 130 3.6.6 Discussing the design tool 132 3.7 CroMat requirement fulfillment 134 4 Research on crocheted fabrics 137 4.1 Modeling and simulation of manually crocheted fabrics 137 4.1.1 Modeling approaches for textiles 137 4.1.2 Developed modeling of crochet structures 138 4.1.3 FEM investigations 143 4.2 Mechanical characteristics of manually crocheted fabrics 146 4.2.1 Study overview 146 4.2.2 Materials and Methods 146 4.2.3 Influence of the crocheter 148 4.2.4 Influence of the crochet structure 150 4.2.5 Crochet composite 152 4.2.6 Evaluation of the results 155 4.3 Modeling and simulation of machine-crocheted fabrics 157 4.3.1 Modeling machine-crocheted fabrics 157 4.3.2 Modeling of INC and DEC 159 4.3.3 Simulative comparison of hand- and machine-crocheted fabrics 161 4.4 Generating machine producible crochet patterns in shapes of 2D polygons 164 4.4.1 Background 164 4.4.2 Developed polygon subdivision algorithm 165 4.4.3 Improving the subdivision’s quality 168 4.4.4 Crochet subdivision results for exemplary polygons 170 4.4.5 Discussing the results 176 4.5 Exemplary machine-crocheted fabrics 178 4.5.1 Basic fabric structure 178 4.5.2 Advanced possible structures 181 4.5.3 Poisson’s ratio investigation 185 5 Conclusion 189 5.1 Summary 189 5.2 Outlook 191 6 References 193 6.1 References of the author 193 6.2 Further references 193 / In the future, due to the climate crisis and the need to reduce CO2 emissions, an increasing demand for lightweight materials such as textile reinforced composites can be expected. Because of rising raw material and energy costs, the application of more near net-shaped composites is promising for reducing manufacturing costs and waste. However, conventional textile technologies are limited in their ability to produce the necessary complex-shaped textiles. In order to address this problem by using alternative technologies that have not yet been industrially established, this thesis deals extensively with the development of a crochet machine and the investigation of respective textiles. Crochet is a stitch-forming technology in which, unlike knitting, the loops of a stitch originate both vertically and horizontally from previously formed stitches. With versatile crochet, it is especially possible to create complex three-dimensional (3D) shapes because new stitches can be formed at any point on a fabric. Previous crochet machine approaches are inadequate and severely limited in scalability to an industrially applicable machine. Industrially established machinery called crochet machines are misleading in their designation because they are knitting machines that can only roughly mimic crochet structure but cannot form true crocheted fabrics. The Crochet Automaton (CroMat) crochet machine developed and patented here enables for the first time the automated production of chain stitches (CHs), slip stitches (SLs), single crochet stitches (SCs), half double crochet stitches (HDCs), turns (T1 and T2), increase stitches (INCs) as well as decrease stitches (DECs) and other operations according to the principle of flat crocheting based on a chain line. In addition, by manually removing and re-hanging the produced fabric, new stitches can be formed at almost any point to produce complex-shaped 3D textiles according to the capabilities of crochet. For example, it is possible to produce shapes relevant for near net-shaped composites such as double T-beams with the developed CroMat prototype. With manually suspending different stitch rows or fabrics on the machine, it is also possible to join them by simultaneously crocheting a course through them. In addition to the mechatronic prototype with ten axes, the world's first tool for designing machine-crocheted textiles is developed. It includes error checking, generation of the G-code for machine control and a preview of the designed fabrics. Beyond a graphical user interface (GUI) with standardized crochet symbols, a higher-level programmability is added through specifying a shape by 2D polygons and automatically generating corresponding, machine-crochetable patterns. The first topology-based modeling framework for machine-producible crochet structures was developed for the preview. A similar modeling was developed for manually crocheted fabrics, which differ from the machine-produced ones only in the fact that the fabric is turned after each row and thus the stitches are formed from different sides. Both models can be used as a basis for simulative finite element method (FEM) investigations, which were used in this work to simulate crocheted fabrics for the first time. Furthermore, the tensile properties of manually crocheted fabrics were systematically investigated for the first time and the properties of the first crochet composites were researched. Crocheted textiles (and corresponding composites) have basically similar properties as knitted textiles but have a tendency to withstand higher forces. Together with the shaping capabilities, the CroMat crochet machine is generally highly promising for the automation of crochet and especially for the future production of near net-shaped composite reinforcements.:1 Introduction 1 1.1 Motivation 1 1.2 Aim 2 1.3 Work structure 3 2 Technical and scientific background 4 2.1 Crochet 4 2.1.1 Technique and stitch formation 5 2.1.2 Crocheting a fabric 8 2.1.3 Applications of crochet 11 2.1.4 Research overview on crochet 11 2.2 Knitting machines 15 2.2.1 Weft knitting 16 2.2.2 Warp knitting 19 2.2.3 Crochet gallon machines 21 2.3 Existing crochet machine approaches 23 2.3.1 First approach to automate crochet 23 2.3.2 Circular crochet machine approach 25 2.3.3 Crocheting with a robotic arm 27 2.3.4 Further attempts to automate crocheting 29 2.4 Rapid prototyping 30 2.4.1 Development approach 30 2.4.2 3D printing 31 2.5 Electric motors 33 2.5.1 Stepper 33 2.5.2 Servo motors 34 2.5.3 G-code 35 2.6 Textile composites 37 2.6.1 Composite production 37 2.6.2 Near net-shaped composites 38 3 Crochet machine development 39 3.1 CroMat innovation process 39 3.1.1 Development phases 39 3.1.2 Analyzing the first crochet machine approach 41 3.1.3 Definition of crochet machine prototype requirements 43 3.1.4 Crochet needle insertion process 47 3.1.5 Suspending stitches on auxiliary needles 55 3.1.6 Yarn guide and patent 57 3.2 Improvements beyond the patent 60 3.2.1 Analyzing the yarn feeding problem 60 3.2.2 Systematic identification of possible solutions 61 3.2.3 Implementation of the most suited solution 64 3.3 Automated crochet stitch formation 67 3.3.1 Initial situation 67 3.3.2 Slip stitch 68 3.3.3 Single crochet 71 3.3.4 Half double crochet 73 3.3.5 Turn 75 3.3.6 Chain stitch and skipping a stitch within a course 77 3.3.7 Increase stitches 79 3.3.8 Decrease stitches 82 3.3.9 Further methods for changing the fabric’s width 84 3.3.10 More complex stitches 87 3.4 Technical implementation of CroMat prototype 89 3.4.1 CroMat machine overview 89 3.4.2 Auxiliary needles 94 3.4.3 Crochet needle 100 3.4.4 Yarn guide 106 3.4.5 Stress on yarn and machine elements 109 3.4.6 Yarn tension 115 3.4.7 Firmware and motor control 117 3.5 Crocheting with the CroMat prototype 120 3.5.1 Producing an exemplary crocheted fabric 120 3.5.2 Movements for SC formation 122 3.6 Development of CroMat crochet design tool 125 3.6.1 Tool overview 125 3.6.2 User interface 126 3.6.3 Error checking 129 3.6.4 Preview of the fabric 130 3.6.5 Generating G-code 130 3.6.6 Discussing the design tool 132 3.7 CroMat requirement fulfillment 134 4 Research on crocheted fabrics 137 4.1 Modeling and simulation of manually crocheted fabrics 137 4.1.1 Modeling approaches for textiles 137 4.1.2 Developed modeling of crochet structures 138 4.1.3 FEM investigations 143 4.2 Mechanical characteristics of manually crocheted fabrics 146 4.2.1 Study overview 146 4.2.2 Materials and Methods 146 4.2.3 Influence of the crocheter 148 4.2.4 Influence of the crochet structure 150 4.2.5 Crochet composite 152 4.2.6 Evaluation of the results 155 4.3 Modeling and simulation of machine-crocheted fabrics 157 4.3.1 Modeling machine-crocheted fabrics 157 4.3.2 Modeling of INC and DEC 159 4.3.3 Simulative comparison of hand- and machine-crocheted fabrics 161 4.4 Generating machine producible crochet patterns in shapes of 2D polygons 164 4.4.1 Background 164 4.4.2 Developed polygon subdivision algorithm 165 4.4.3 Improving the subdivision’s quality 168 4.4.4 Crochet subdivision results for exemplary polygons 170 4.4.5 Discussing the results 176 4.5 Exemplary machine-crocheted fabrics 178 4.5.1 Basic fabric structure 178 4.5.2 Advanced possible structures 181 4.5.3 Poisson’s ratio investigation 185 5 Conclusion 189 5.1 Summary 189 5.2 Outlook 191 6 References 193 6.1 References of the author 193 6.2 Further references 193
9

COMPUTER-AIDED DESIGN OF CIRCULARLY-POLARIZED CONFORMAL MICROSTRIP PATCH ANTENNA FOR TELEMETRY APPLICATIONS

Wu, Doris I., Rieger, James 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / Planar microstrip antennas are desirable in many telemetry applications because they are small in size, light in weight, and conformal to most surfaces. The design and optimization of circularly-polarized omnidirectional microstrip arrays using a new software simulation tool are discussed in this paper. Critical design issues such as the optimization of each array element for circular polarization and the minimization of mutual couplings as well as feed network mismatch are examined. The software tool, which consists of a novel graphical user interface and a full-wave numerical simulator for a flat mounting surface, provides a testbed environment for the user to explore new designs as well as optimizing existing designs. Using this tool, the design of several wraparound arrays with different mounting cylinder radii are presented. Comparisons between measured and simulated data for two S-band 8-element wraparound arrays are also presented.
10

A context model, design tool and architecture for context-aware systems designs

Kaenampornpan, Manasawee January 2009 (has links)
No description available.

Page generated in 0.0679 seconds