1 |
Data Bus Deskewing Systems in Digital CMOS TechnologyAtrash, Amer Hani 13 May 2004 (has links)
This dissertation presents a study of signal deskewing systems in standard CMOS technologies. The objective of this work is to understand the limitations of deskewing systems as they are applied to modern systems and present new architectures to overcome past limitations. Traditional methods for signal deskewing are
explored and the general limitations of these methods are identified. Several new architectures are proposed to address the limitations of previous techniques. The
systems will be investigated with regard to minimum resolution, programming time,
delay, maximum data rate, full scale range, and duty cycle distortion. Several other
effects that are critical to the operation of deskewing systems will also be investigated.
These effects include overshoot caused by parasitic package inductance, the impact
of capacitive terminations, and the effect of mutual inductance between traces.
To fulfill the requirements of this study, two deskewing systems are implemented
in a 0.25um process. An open-loop system for deskewing wide data busses and a
closed-loop system for deskewing a differential pair of lines are both fabricated. Both
systems are found to meet the expected performance metrics, providing validation of
the proposed techniques. Use of the proposed architectures allows the limitations of
previous methods to be overcome. The remaining work is validated through either analytical techniques, simulations, or both where appropriate.
|
2 |
Fast Clock Synchronization for Large-Scale MEMS Ultrasonic Transducer ArraysKarlsson, Karl-Johan January 2022 (has links)
In many systems today sensors or transmitters need to be read or controlled simultaneously. This thesis investigates a new architecture used for deskewing clock signals between multiple separated parts of a signal transmission system. The original application is a multi-channel MEMS transceiver system utilizing beamforming, split into two separate modules. The presented architecture has been developed after evaluating multiple alternative systems. Special focus has been on the locking time of the full system. Furthermore, the scalability for use in implementations with requirements for interconnection delays, as well as input frequency and final timing skew. The full system consists of two parts, a master- and a slave-system. A proof-of-concept transistor implementation has been done in a 180 nm CMOS process. It has been simulated to verify the functionality with varying interconnection delays, i.e., wire lengths up to 1 m. The results from the simulations show that the system works as intended with a skew less than the required 1 ns for a 10 MHz clock signal. This fulfills the requirement for the original application. Further work is required to finalize the presented system before deployment in an actual product
|
3 |
Σχεδίαση μικροηλεκτρονικών κυκλωμάτων μεγάλης ταχύτητας για τηλεπικοινωνιακές εφαρμογές και επίλυση προβλημάτων χρονισμού / Design of high speed integrated circuits for telecommunications applications and resolving of timing issuesΚοζιώτης, Μιχαήλ 03 August 2009 (has links)
Αντικείμενο της διατριβής είναι η επίδειξη μεθόδων, που βρίσκουν εφαρμογή, τόσο ειδικότερα στην σχεδίαση πολύπλοκων ψηφιακών μικροηλεκτρονικών κυκλωμάτων μεγάλης ταχύτητας, για τηλεπικοινωνιακά δίκτυα οπτικών ινών, όσο και γενικότερα για την επίλυση θεμάτων χρονισμού, που προκύπτουν κατά την υλοποίηση πολύπλοκων ολοκληρωμένων συστημάτων πάνω σε chip.
Όσον αφορά, τον χώρο των τηλεπικοινωνιακών κυκλωμάτων, παρουσιάζονται μέθοδοι, τόσο για την συνολική οργάνωση του ολοκληρωμένου κυκλώματος, όσο και για την κυκλωματική υλοποίηση λειτουργικών μονάδων κοινών σε τηλεπικοινωνιακά κυκλώματα, με απαιτήσεις υψηλής ταχύτητας, χαμηλής κατανάλωσης, και ταυτόχρονης συνύπαρξης πολλαπλών ρολογιών. Η επίδειξη των προτεινόμενων μεθόδων καθώς και η επαλήθευση της ορθότητά τους, πραγματοποιείται, μέσα από την υλοποίηση σε πυρίτιο, ενός πολύπλοκου τηλεπικοινωνιακού ολοκληρωμένου κυκλώματος, με υψηλές απαιτήσεις ταχύτητας λειτουργίας.
Όσον αφορά, τον γενικότερο χώρο της σχεδίασης πολύπλοκων ολοκληρωμένων System-on-Chip (SoC), παρουσιάζονται μέθοδοι για την επίλυση προβλημάτων χρονισμού, στα σύγχρονα ψηφιακά ολοκληρωμένα κυκλώματα, που σχετίζονται με την διάδοση και τον πολλαπλασιασμό της συχνότητας του ρολογιού, στο εσωτερικό των κυκλωμάτων αυτών. Πιο συγκεκριμένα, παρουσιάζονται μέθοδοι που μπορούν να εφαρμοστούν, τόσο για την εξάλειψη της παρέκκλισης, μεταξύ των κόμβων των εσωτερικών ρολογιών, όσο και για την εξάλειψη της παρέκκλισης μεταξύ εξωτερικού και εσωτερικού ρολογιού, στα ολοκληρωμένα κυκλώματα. Όσον αφορά το δεύτερο, η συχνότητα του εσωτερικού ρολογιού δεν ταυτίζεται απαραίτητα με αυτήν του εξωτερικού, αλλά επιτρέπεται να έχει πολλαπλάσια τιμή από αυτήν. Για την ευθυγράμμιση του εσωτερικού με το εξωτερικό ρολόι, προτείνεται η συστηματική μέθοδος LCD-SMD, η οποία είναι κατάλληλη για χρήση σε ολοκληρωμένα όπου επικρατούν συνθήκες μακρύ οδηγού ρολογιού, παράγει εσωτερικό ρολόι πολλαπλάσιο του εξωτερικού με σταθερό 50% duty-cycle, έχει μικρό χρόνο κλειδώματος, και χρησιμοποιεί εξ’ ολοκλήρου ψηφιακές λογικές πύλες. Η επικύρωση της ορθότητας των προτεινόμενων μεθόδων για θέματα χρονισμού, γίνεται κατά ένα μέρος με υλοποίηση σε πυρίτιο, και κατά ένα άλλο μέρος με εξομοιώσεις. / This Thesis aims to demonstrate design methods that can be applied as much in the design of high complexity, high speed, digital integrated circuits for optical fiber networks, as more generally to resolve timing issues, arising during the implementation of integrated circuits (IC’s).
Specifically, in this Thesis we present methods for the holistic organization of a digital integrated circuit (driven by the needs imposed by nowadays telecommunications area), as well as methods regarding circuit implementation of various common functional units in telecommunications circuits that require high speed, low power and multiple clocks. The proposed methods are demonstrated and validated through the silicon implementation of a complex telecom integrated circuit (SDH framer).
The design of the here-above mentioned chips lie into the more general area of the complex integrated Systems-on-Chips (SoCs). The methods developed in the Thesis, concern the distribution and frequency multiplication of the clock signal, inside the chip. In particular, we address between others, methods to remove the skew between the internal clock nodes, as well as methods to remove the skew between the internal and external clock. The internal clock frequency is allowed to be a multiple of the external clock frequency. For the alignment of the internal with the external clock, the systematic open-loop method LCD-SMD has been proposed, which is applicable to IC’s with long clock driver conditions. Through this method, we accomplish the generation of an internal clock with multiple frequencies than the external, while preserving a constant 50% duty-cycle. The method results into a fast lock time, and employs only standard digital logic gates. The proposed methods are validated both by silicon implementation and by simulations.
|
Page generated in 0.0427 seconds