• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 13
  • 9
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of the use of diacrylate as holographic recording material

Chan, Chih-chieh 27 July 2010 (has links)
Many properties of photosensitize material is applied to the holographic recording of the photosensitive materials. The diacrylateis(RM257) is liquid crystalline materials. Beasuse the RM257 with photopolymeriable acrylate endgroups, under the action of light, polymerization of the mesogen with two polymerization groups lesds to crosslinked polymer networks. As the RM257 has a sensitivity to light and good molecular arrangement , it can be applied to optical storage. In this study, the use of the RM257 thin films as holographic recording materials ; the holography patterns were written using two s-s polarized, mutually coherence He-Ne laser at 633nm light. First, a single beam of He-Ne laser irradiates the RM257, and control exposure time, irradiation intensity, to investigate the RM257 on He-Ne laser (633nm) absorption. Then RM257 thin film exposed to two beams of He-Ne laser induced holographic interferemce fileld. Holography irradiation RM257 thin film arranged molecular singular direction and periodic alignment of molecular, and to fabricate the formation of holographic gratings. The sample temperature is controlled during holography irradiation, can improve RM257 thin film record as holographic interferemce fileld. To investigate holographic fileld induced the molecular of RM257 thin film.
2

Study of Holographic Recording in Diacrylate Mesogens Using 632.8 nm He-Ne Laser

Chang, Shih-Jen 06 July 2011 (has links)
He-Ne Laser induced polymerization in diacrylate mesogens RM257 had been verified in previous studies. Holography patterns can also be recorded in RM257 using He-Ne Laser. Higher diffraction efficiency was obtained by controlling temperature of the mesogen. In the present study, we consider the diacrylate compound RM82 that is main chain polymeric liquid crystal with different length of chain. We focus on two objectives in this study: (i) to investigate polymerization and absorbance of RM82 thin film that was exposed to He-Ne laser with the temperature of sample control, the initial power intensity of laser beam and the exposed time. (ii)Using the result of part (i), the possibility of the use of RM82 thin film for recording holographic patterns produced using a laser beam emitted from a 12mW He-Ne laser operated at 633 nm wavelength is studied. The periodic structures and orientated diacrylate polymer networks are produced in the polymer film by holographic field produced using He-Ne laser. The region of light stripes was aligned perpendicular to the gratings, whereas the region of dark stripes was disorder.
3

HeNe Laser Initiated Polymerization of a Diacrylate Mesogen and the Configuration of the Diacrylate Polymer

Wang, Wei-Jian 14 July 2011 (has links)
RM257 is a photopolymerisable diacrylate mesogen. In its normal way, the polymerization of the diacrylate mesogen is initiated by using UV light. RM257 mesogen have photopolymeriable acrylate endgroups. RM257 molecules form to polymer network. In this study, we use 632.8 nm HeNe laser to initiate the monomer conversion of RM257. The effects of light intensity, exposure time and temperature of monomer on the rate of polymerization have been studied. The monomer conversion of RM257 is found to have a higher rate when the mesogen in the isotropic phase. On other hand, using a two ¡Vbeen interference pattern, a periodic structure was be produced in the RM257 polymer network. The mesogen has a uniform ordered. To discuss that diacylate effected by holographic light field.
4

Polymeric Monolithic Stationary Phases for Capillary Hydrophobic Interaction Chromatography

Li, Yuanyuan 06 October 2010 (has links) (PDF)
Rigid poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] (Poly(HEA-co-PEGDA) monoliths were synthesized inside 75-µm i.d. capillaries by one-step UV-initiated copolymerization using methanol and ethyl ether as porogens. The optimized monolithic column was evaluated for hydrophobic interaction chromatography (HIC) of standard proteins. Six proteins were separated within 20 min with high resolution using a 20 min elution gradient, resulting in a peak capacity of 54. The performance of this monolithic column for HIC was comparable or superior to the performance of columns packed with small particles. Monoliths synthesized solely from PEGDA were also found to show excellent performance in HIC of proteins. Continuing efforts showed that rigid monoliths could be synthesized from PEGDA or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths for HIC of proteins. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The single-monomer synthesis approach clearly improves column-to-column reproducibility.The highly crosslinked monolith networks resulting from single crosslinking monomers were found to enhance the surface area of the monolith and concentrations of mesopores. Thus, monolithic columns were developed from four additional crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol = 2 or 4) and pentaerythritol diacrylate monostearate (PDAM) for RPLC of small molecules. Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution using all monolithic columns. Porogen selection for the BADMA and PDAM was investigated in detail with the intention of obtaining data that could possiblly lead to a rational method for porogen selection.
5

Water transport study in crosslinked poly(ethylene oxide) hydrogels as fouling-resistant membrane coating materials

Ju, Hao 15 September 2010 (has links)
The major objective of this research is a systematic experimental exploration of hydrophilic materials that can be applied as coating materials for conventional ultrafiltration (UF) membranes to improve their fouling resistance against organic components. This objective is achieved by developing new, fouling-reducing membrane coatings and applying these coatings to conventional UF membranes, which can provide unprecedented reduction in membrane fouling and marked improvements in membrane lifetime. Novel polymeric materials are synthesized via free-radical photopolymerization of mixtures containing poly(ethylene glycol) diacrylate (PEGDA), photoinitiator, and water. PEGDA chain length (n=10-45, where n is the average number of ethylene oxide units in the PEGDA molecule) and water content in the prepolymerization mixture (0-80 wt.%) were varied. Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization mixture. Specifically, for XLPEGDA prepared with PEGDA (n=13), water permeability increased from 0.6 to 150 L um/(m2 h bar) as prepolymerization water content increased from 0 to 80 wt.%. Water permeability also increased with increasing PEGDA chain length. Moreover, water permeability exhibits a strong correlation with equilibrium water uptake. However, solute rejection, probed using poly(ethylene glycol)s of well defined molar mass, decreased with increasing prepolymerization water content and increasing PEGDA chain length. That is, there is a tradeoff between water permeability and separation properties: Materials with high water permeability typically exhibit low solute rejections, and vice versa. The fouling resistance of XLPEGDA materials was characterized via contact angle measurements and static protein adhesion experiments. From these results, XLPEGDA surfaces are more hydrophilic in samples prepared at higher prepolymerization water content or with longer PEGDA chains, and the more hydrophilic surfaces generally exhibit less BSA accumulation. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes. / text
6

The Study of Nonlinear Optical Properties of Diacrylate Using Z-SCAN Technique

Li, Ming-Hong 02 July 2012 (has links)
Polymer liquid crystal possesses advantages of polymer in chemical industry and liquid crystal in display industry,so it is attracted more attention in science and technology. Diacrylate is a polymer liquid crystal with photosensitive property, so ,it can be applied to optical storage . He-Ne laser induced polymerization in diacrylate mesogen RM257 and RM82 had been verified in previous study. Furthermore, holography pattern can be recorded in RM257 and RM82 by controlling both the temperature of sample and the time of exposing. In this study, we consider the study of nonlinear optical properties of diacrylate using Z-SCAN techeique.¡¨Z-SCAN¡¨ is a simply yet highly sensitive single-beam experimential technique ,it can be used to measure both nonlinear absorption and nonlinear refraction.In this study ,we measured effect of absorption of diacrylate in irradiation of He-Ne laser using Z-SCAN technique.To investigate the reason that He-Ne laser induced polymerization in both RM257 and RM82.
7

PFG-NMR studies of ATP diffusion in PEG-DA hydrogels and aqueous solutions of PEG-DA polymers

Majer, Günter, Southan, Alexander 13 September 2018 (has links)
Adenosine triphosphate (ATP) is the major carrier of chemical energy in cells. The diffusion of ATP in hydrogels, which have a structural resemblance to the natural extracellular matrix, is therefore of great importance to understand many biological processes. In continuation of our recent studies of ATP diffusion in poly(ethylene glycol) diacrylate (PEG-DA) hydrogels by pulsed field gradient nuclear magnetic resonance (PFG-NMR), we present precise diffusion measurements of ATP in aqueous solutions of PEG-DA polymers, which are not cross-linked to a three-dimensional network. The dependence of the ATP diffusion on the polymer volume fraction in the hydrogels, φ, was found to be consistent with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. The present measurements of ATP diffusion in aqueous solutions of the polymers revealed that the diffusion coefficient is determined by φ only, regardless of whether the polymers are cross-linked or not. These results seem to be inconsistent with the free volume model, according to which voids are formed by a statistical redistribution of surrounding molecules, which is expected to occur more frequently in the case of not cross-linked polymers. The present results indicate that ATP diffusion takes place only in the aqueous regions of the systems, with the volume fraction of the polymers, including a solvating water layer, being blocked for the ATP molecules. The solvating water layer increases the effective volume of the polymers by 66%. This modified obstruction model is most appropriate to correctly describe the ATP diffusion in PEG-DA hydrogels.
8

Polyethylene Glycol Diacrylate (PEGDA) Resin Development for 3D-Printed Microfluidic Devices

Qaderi, Kamran 01 May 2015 (has links) (PDF)
In this thesis, the successful fabrication of 3D-printed microfluidic devices will be discussed. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer utilizing a custom PEGDA resin formulation tailored for low non-specific protein adsorption based on my colleagues' work [Rogers et al., Anal. Chem. 83, 6418 (2011)]. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 300 um wide and 150 um tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 300 um designed (334 um actual) diameters. Moreover, two different resins developed by our group are utilized in the process of 3D-printing which is the novel aspect about this thesis since other groups have not done research on this aspect of 3D-printing.
9

High-Performance Polymer Monoliths for Capillary Liquid Chromatography

Aggarwal, Pankaj 29 July 2014 (has links) (PDF)
This dissertation focuses on improving the chromatographic efficiency of polymeric organic monoliths by characterizing and optimizing the bed morphology. In-situ characterization techniques such as capillary flow porometry (CFP), 3-dimensional scanning electron microscopy (3D SEM) and conductivity measurements were developed and implemented to quantitatively characterize the morphology of poly(ethylene glycol) diacrylate (PEGDA) monoliths. The CFP measurements for monoliths prepared by the same procedure in capillaries with different diameters (i.e., 75, 150, and 250 μm) clearly showed a change in average through-pore size with capillary diameter, thus, certifying the need for in-situ measurement techniques. Serial sectioning and imaging of PEGDA monoliths using 3D SEM gave quantitative information about the average pore size, porosity, radial heterogeneity and tortuosity of the monolith. Chromatographic efficiency was better for a monolith with smaller average pore size (i.e., 5.23 μm), porosity (i.e., 0.49), radial heterogeneity (i.e., 0.20) and tortuosity (i.e., 1.50) compared to another monolith with values of 5.90 μm, 0.59, 0.50 and 2.34, respectively. Other than providing information about monolith morphology, these techniques also aided in identifying factors governing morphological changes, such as capillary diameter, polymerization method, physical/chemical properties of the pre-polymer constituents and weight proportion of the same. A statistical model was developed for optimizing the weight proportion of pre-polymer constituents from their physical/chemical properties for improved chromatographic efficiency. Fabricated PEGDA columns were used for liquid chromatography of small molecules such as phenols, hydroxyl benzoic acids, and alkyl parabens. The chromatographic retention mechanism was determined to be principally reversed-phase (RP) with additional hydrogen bonding between the polar groups of the analytes and the ethylene oxide groups embedded in the monolith structure. The chromatographic efficiency measured for a non-retained compound (uracil) was 186,000 plates/m when corrected for injector dead volume. High resolution gradient separations of selected pharmaceutical compounds and phenylurea herbicides were achieved in less than 18 min. Column preparation was highly reproducible, with relative standard deviation (RSD) values less than 2.1%, based on retention times of the phenol standards (3 different columns). A further improvement in chromatographic performance was achieved for monoliths fabricated using a different polymerization method, i.e., living free-radical polymerization (LFRP). The columns gave an unprecedented column performance of 238, 000 plates/m for a non-retained compound under RP conditions.
10

Properties of Poly(ethylene glycol) Diacrylate Blends and Acoustically Focused Multilayered Biocomposites Developed for Tissue Engineering Applications

Mazzoccoli, Jason Paul 05 June 2008 (has links)
No description available.

Page generated in 0.0426 seconds