Spelling suggestions: "subject:"diethylamine"" "subject:"diethylamino""
1 |
LSD-Serotonin-Bindungsproteine und LSD-Verdrängungsfaktoren (LDF) in den Organen der RatteStolzki, Bernhard, January 1979 (has links)
Thesis (doctoral)--Ludwig Maximilians-Universität zu München, 1979.
|
2 |
Dietilamida do ácido lisérgico (LSD) e N,N-dimetiltriptamina (DMT) como substratos de peroxidases: uma possível rota de metabolização / Lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT) as peroxidases substrates: a possible metabolization pathwayGomes, Melissa Medrano 25 February 2008 (has links)
Após um intervalo de duas décadas, ressurgiu um novo interesse em estudos sobre alucinógenos que visam a compreensão de como estes compostos interagem com o sistema nervoso central (SNC). Sabendo-se que enzimas do tipo peroxidases estão presentes em células do tipo leucócitos, neurônios e microglia, e que, são capazes de oxidar compostos indólicos, esta, portanto, poderia representar uma rota ativa de metabolização de alucinógenos no SNC, ainda não conhecida. Nesta perspectiva, este trabalho contribui com a descrição da metabolização da dietilamida do ácido lisérgico (LSD) e da N,N-dimetiltriptamina (DMT) por peroxidase de rábano (HRP) e mieloperoxidase (MPO) proveniente de neutrófilos ativados. A formação de produtos de reação foi acompanhada por HPLC com detectores de arranjo de diodos (DAD) e fluorescência, e a identificação por espectrometria de massas (MS). Ambas as peroxidases foram capazes de metabolizar LSD a compostos que coincidem com produtos de sua metabolização in vivo, como 2-oxo-3-hidroxi-LSD (O-H-LSD) e nor-LSD, por enzimas hepáticas do complexo P450. Entretanto, um terceiro produto formado não havia sido descrito anteriormente. Apresenta como característica principal a abertura do anel indólico e foi nomeado pelo nosso grupo como N,N-dietil-7-formamido-4-metil-6-oxo-2,3,4,4a,5,6-hexahidrobenzo[f]quinolina-2-carboxamida (FOMBK). De uma maneira semelhante, HRP e MPO também metabolizaram DMT a um produto hidroxilado (OH-DMT), que possivelmente apresenta considerável ação alucinógena, e a um segundo produto nomeado N,N-dimetil-N-formil-quinuramina (DMFK). Visto que peroxidases estão presentes em diferentes tipos celulares, é razoável supor que a formação dos produtos descritos neste estudo possa ocorrer in vivo, numa possível via alternativa de metabolização de LSD e DMT ainda não descrita em humanos. / After a gap of two decades a new interest in hallucinogen studies that aim the comprehension of how these compounds interact with the central nervous system (CNS) rose again. It is known that peroxidases enzymes are present in cells such as leukocytes, neurons and microglia and that they are capable of oxidizing indolic compounds. Then it could represent an active metabolization pathway for hallucinogens in the CNS, not known yet. In this perspective, this study contributed with the description of the metabolization of lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT) by horseradish peroxidase (HRP) and myeloperoxidase (MPO) from activated neutrophils. The formation of the reaction products was attended by HPLC with diode array and fluorescence detectors, and the identification by mass spectrometry (MS). Both peroxidases were capable of metabolizing LSD to compounds that coincide with products from its in vivo metabolization, as 2-oxo-3-hydroxy-LSD (O-H-LSD) and nor-LSD by the liver enzymes from P450 complex. However, a third compound had not been described before. It has the opened indolic ring as main characteristic and was named by our group as N,N-diethyl-7-formamido-4-methyl-6-oxo-2,3,4,4a,5,6-hexahydrobenzo[f]quinoline-2-carboxamide (FOMBK). In a similar way, HRP and MPO also metabolized DMT to a hydroxylated product (OH-DMT) that possibly shows a considerable hallucinogen action and to a second product named as N,N-dimethyl-N-formyl-kynuramine (DMFK). Since peroxidases are present in different cell types, it is reasonable to assume that the formation of the products described in this study may occur in vivo as well, in a possible alternative metabolic pathway for LSD and DMT that has not been described in humans yet.
|
3 |
Mikrodosering av lysergsyradietylamid och psilocybin och dess effekter på psykisk hälsa / The effects of micro dosing lysergic acid diethylamide and psilocybin on mental healthLarsson, Anisha Lela January 2018 (has links)
Mikrodosering av psykedeliska droger är den senaste trenden som verkar ha fått en stor spridning, främst bland unga människor för att uppnå ökad produktivitet och kreativitet, men även för att uppnå allmän psykisk hälsa. Denna uppsats lägger fokus på lysergsyradietylamid (LSD) och psilocybin (magic mushroom). Mikrodosering innebär att användaren tar en väldigt låg dos av substansen. Dosen ger ingen psykedelisk effekt, d.v.s. inga visuella effekter, inget förändrat medvetandetillstånd,och ingen förändrad tids-eller rumsuppfattning. Deltagare (n=201) besvarade en elektronisk enkät som distribuerades i olika forum med intresse för psykedeliska substanser. I denna deskriptiva sambandsstudie undersöktes motiveringen av att mikrodosera LSD-och psilocybin, samt vilka positiva och negativa effekter mikrodosering av dessa substanser har på den psykiska hälsan.Deltagare uppgav upplevd minskad depression, ångest och stress, men att det inte var den primära anledningen till att de mikrodoserade trots att 62% hade självdiagnostiserat sig med någon form av upplevd ohälsa. De primära motiven med att mikrodosera, som angavs i enkäten, var att förbättra den allmänna hälsan, samt för att nå ökad kreativitet och produktivitet. Trots upplevda negativa bieffekter under mikrodoseringscykeln uppgav majoriteten att de ville fortsätta att mikrodosera. På grund av urvalet är studieresultatet inte generaliserbart och efterföljande undersökningar med hypoteser och frågor är att föreslå.
|
4 |
Dietilamida do ácido lisérgico (LSD) e N,N-dimetiltriptamina (DMT) como substratos de peroxidases: uma possível rota de metabolização / Lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT) as peroxidases substrates: a possible metabolization pathwayMelissa Medrano Gomes 25 February 2008 (has links)
Após um intervalo de duas décadas, ressurgiu um novo interesse em estudos sobre alucinógenos que visam a compreensão de como estes compostos interagem com o sistema nervoso central (SNC). Sabendo-se que enzimas do tipo peroxidases estão presentes em células do tipo leucócitos, neurônios e microglia, e que, são capazes de oxidar compostos indólicos, esta, portanto, poderia representar uma rota ativa de metabolização de alucinógenos no SNC, ainda não conhecida. Nesta perspectiva, este trabalho contribui com a descrição da metabolização da dietilamida do ácido lisérgico (LSD) e da N,N-dimetiltriptamina (DMT) por peroxidase de rábano (HRP) e mieloperoxidase (MPO) proveniente de neutrófilos ativados. A formação de produtos de reação foi acompanhada por HPLC com detectores de arranjo de diodos (DAD) e fluorescência, e a identificação por espectrometria de massas (MS). Ambas as peroxidases foram capazes de metabolizar LSD a compostos que coincidem com produtos de sua metabolização in vivo, como 2-oxo-3-hidroxi-LSD (O-H-LSD) e nor-LSD, por enzimas hepáticas do complexo P450. Entretanto, um terceiro produto formado não havia sido descrito anteriormente. Apresenta como característica principal a abertura do anel indólico e foi nomeado pelo nosso grupo como N,N-dietil-7-formamido-4-metil-6-oxo-2,3,4,4a,5,6-hexahidrobenzo[f]quinolina-2-carboxamida (FOMBK). De uma maneira semelhante, HRP e MPO também metabolizaram DMT a um produto hidroxilado (OH-DMT), que possivelmente apresenta considerável ação alucinógena, e a um segundo produto nomeado N,N-dimetil-N-formil-quinuramina (DMFK). Visto que peroxidases estão presentes em diferentes tipos celulares, é razoável supor que a formação dos produtos descritos neste estudo possa ocorrer in vivo, numa possível via alternativa de metabolização de LSD e DMT ainda não descrita em humanos. / After a gap of two decades a new interest in hallucinogen studies that aim the comprehension of how these compounds interact with the central nervous system (CNS) rose again. It is known that peroxidases enzymes are present in cells such as leukocytes, neurons and microglia and that they are capable of oxidizing indolic compounds. Then it could represent an active metabolization pathway for hallucinogens in the CNS, not known yet. In this perspective, this study contributed with the description of the metabolization of lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT) by horseradish peroxidase (HRP) and myeloperoxidase (MPO) from activated neutrophils. The formation of the reaction products was attended by HPLC with diode array and fluorescence detectors, and the identification by mass spectrometry (MS). Both peroxidases were capable of metabolizing LSD to compounds that coincide with products from its in vivo metabolization, as 2-oxo-3-hydroxy-LSD (O-H-LSD) and nor-LSD by the liver enzymes from P450 complex. However, a third compound had not been described before. It has the opened indolic ring as main characteristic and was named by our group as N,N-diethyl-7-formamido-4-methyl-6-oxo-2,3,4,4a,5,6-hexahydrobenzo[f]quinoline-2-carboxamide (FOMBK). In a similar way, HRP and MPO also metabolized DMT to a hydroxylated product (OH-DMT) that possibly shows a considerable hallucinogen action and to a second product named as N,N-dimethyl-N-formyl-kynuramine (DMFK). Since peroxidases are present in different cell types, it is reasonable to assume that the formation of the products described in this study may occur in vivo as well, in a possible alternative metabolic pathway for LSD and DMT that has not been described in humans yet.
|
5 |
Ovarian hormones and effects in the brain : studies of neurosteroid sensitivity, serotonin transporter and serotonin2A receptor binding in reproductive and postmenopausal womenWihlbäck, Anna-Carin January 2004 (has links)
Background: Estrogen has been reported to enhance well-being and quality of life during the climacteric phase. In women with an intact uterus estrogen treatment is always combined with progestins in order to protect the endometrium from hyperplasia and malignancies. However, in certain women the addition of progestins causes cyclicity in negative mood symptoms and physical symptoms similar to those encountered during ovulatory cycles in women with premenstrual dysphoric disorder (PMDD). The ovarian hormones estradiol and progesterone have profound effects on a number of neurotransmitter systems in the brain, such as the gamma aminobutyric acid (GABA) system and the serotonergic system. Progesterone metabolites, such as allopregnanolone and pregnanolone (also referred to as neurosteroids) modify the GABAA receptor in the central nervous system (CNS) and enhance GABAergic inhibitory transmission. Neurosteroid sensitivity in human studies can be studied by saccadic eye movement measurements using pharmacodynamic challenges with pregnanolone. Altered neurosteroid sensitivity has been suggested as a possible contributory factor to the progesterone/progestin-induced adverse mood effects of hormone replacement therapy (HRT). There is also evidence of estrogen treatment affecting the serotonergic system in postmenopausal women, although progestin addition has been less well studied. Aims and method: The aim was to investigate whether the negative mood symptoms experienced during the progestin or progesterone phase of HRT were associated with changes in neurosteroid sensitivity, or changes in platelet serotonin uptake site (transporter) and serotonin2A (5-HT2A) receptor binding. The intention was also to investigate whether hormonal changes during the normal menstrual cycle affect these peripheral serotonergic parameters. Postmenopausal women with climacteric symptoms were given HRT in two randomized, double-blinded, placebo-controlled crossover studies. The women received 2 mg estradiol (E2) continuously during 28- day cycles. Synthetic progestins or natural progesterone were added sequentially during the last 14 days, and compared to a placebo addition. Before treatment, as well as during the last week of each treatment cycle the pharmacodynamic response to pregnanolone was assessed using saccadic eye movement measurements. Throughout the studies daily symptom ratings were made. In the study regarding synthetic progestins, platelet serotonin transporter and 5-HT2A receptor binding were assayed before entering the study, as well as during the last week of each treatment cycle. In the study on reproductive women, blood samples were collected for analysis of platelet serotonin transporter and 5-HT2A receptor binding at six different points in time during the menstrual cycle. Results and conclusion: The addition of synthetic progestins to estrogen treatment increased negative mood symptoms and physical symptoms, whereas positive symptoms decreased. The addition of progestins also increased the sensitivity to pregnanolone. The addition of natural progesterone to estrogen treatment increased the sensitivity to pregnanolone. However, in this study the pregnanolone sensitivity was enhanced also during estrogen treatment. Women expressing cyclicity in negative mood symptoms were more sensitive to pregnanolone than women without symptom cyclicity. Thus, it is evident that mood deterioration during HRT is associated with altered neurosteroid sensitivity. Platelet serotonin transporter and 5-HT2A receptor binding did not change during the different treatment conditions in HRT. Thus, we were unable to explain the negative mood changes of HRT by use of these peripheral serotonergic parameters. In the study on reproductive women however, it was clear that the serotonergic variables did change during the menstrual cycle. Binding to the serotonin transporter was higher in the late follicular phase than in the ovulatory, early luteal or mid-luteal phases. Binding to the 5-HT2A receptor was higher in the early follicular phase and the early luteal phase than in the mid-luteal phase. These findings may provide a link between the ovarian steroids, and the GABAergic and serotonergic neurotransmitter systems, which in turn, could explain part of the specific vulnerability that women have for the development of adverse mood effects during HRT, mood and anxiety disorders and for the deterioration of mood so frequently seen during the luteal phase.
|
Page generated in 0.0409 seconds