• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 39
  • 17
  • 17
  • 17
  • 17
  • 13
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 124
  • 124
  • 124
  • 40
  • 40
  • 38
  • 24
  • 23
  • 22
  • 20
  • 17
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Superstable manifolds of invariant circles

Kaschner, Scott R. 10 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Let f:X\rightarrow X be a dominant meromorphic self-map, where X is a compact, connected complex manifold of dimension n > 1. Suppose there is an embedded copy of \mathbb P^1 that is invariant under f, with f holomorphic and transversally superattracting with degree a in some neighborhood. Suppose also that f restricted to this line is given by z\rightarrow z^b, with resulting invariant circle S. We prove that if a ≥ b, then the local stable manifold W^s_loc(S) is real analytic. In fact, we state and prove a suitable localized version that can be useful in wider contexts. We then show that the condition a ≥ b cannot be relaxed without adding additional hypotheses by resenting two examples with a < b for which W^s_loc(S) is not real analytic in the neighborhood of any point.
122

New methods of characterizing spatio-temporal patterns in laboratory experiments

Kurtuldu, Huseyin 25 August 2010 (has links)
Complex patterns arise in many extended nonlinear nonequilibrium systems in physics, chemistry and biology. Information extraction from these complex patterns is a challenge and has been a main subject of research for many years. We study patterns in Rayleigh-Benard convection (RBC) acquired from our laboratory experiments to develop new characterization techniques for complex spatio-temporal patterns. Computational homology, a new topological characterization technique, is applied to the experimental data to investigate dynamics by quantifying convective patterns in a unique way. The homology analysis is used to detect symmetry breakings between hot and cold flows as a function of thermal driving in experiments, where other conventional techniques, e.g., curvature and wave-number distribution, failed to reveal this asymmetry. Furthermore, quantitative information is acquired from the outputs of homology to identify different spatio-temporal states. We use this information to obtain a reduced dynamical description of spatio-temporal chaos to investigate extensivity and physical boundary effects in RBC. The results from homological analysis are also compared to other dimensionality reduction techniques such as Karhunen-Loeve decomposition and Fourier analysis.
123

Nonlinear Impulsive and Hybrid Dynamical Systems

Nersesov, Sergey G 23 June 2005 (has links)
Modern complex dynamical systems typically possess a multiechelon hierarchical hybrid structure characterized by continuous-time dynamics at the lower-level units and logical decision-making units at the higher-level of hierarchy. Hybrid dynamical systems involve an interacting countable collection of dynamical systems defined on subregions of the partitioned state space. Thus, in addition to traditional control systems, hybrid control systems involve supervising controllers which serve to coordinate the (sometimes competing) actions of the lower-level controllers. A subclass of hybrid dynamical systems are impulsive dynamical systems which consist of three elements, namely, a continuous-time differential equation, a difference equation, and a criterion for determining when the states of the system are to be reset. One of the main topics of this dissertation is the development of stability analysis and control design for impulsive dynamical systems. Specifically, we generalize Poincare's theorem to dynamical systems possessing left-continuous flows to address the stability of limit cycles and periodic orbits of left-continuous, hybrid, and impulsive dynamical systems. For nonlinear impulsive dynamical systems, we present partial stability results, that is, stability with respect to part of the system's state. Furthermore, we develop adaptive control framework for general class of impulsive systems as well as energy-based control framework for hybrid port-controlled Hamiltonian systems. Extensions of stability theory for impulsive dynamical systems with respect to the nonnegative orthant of the state space are also addressed in this dissertation. Furthermore, we design optimal output feedback controllers for set-point regulation of linear nonnegative dynamical systems. Another main topic that has been addressed in this research is the stability analysis of large-scale dynamical systems. Specifically, we extend the theory of vector Lyapunov functions by constructing a generalized comparison system whose vector field can be a function of the comparison system states as well as the nonlinear dynamical system states. Furthermore, we present a generalized convergence result which, in the case of a scalar comparison system, specializes to the classical Krasovskii-LaSalle invariant set theorem. Moreover, we develop vector dissipativity theory for large-scale dynamical systems based on vector storage functions and vector supply rates. Finally, using a large-scale dynamical systems perspective, we develop a system-theoretic foundation for thermodynamics. Specifically, using compartmental dynamical system energy flow models, we place the universal energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation laws of thermodynamics on a system-theoretic basis.
124

Escape rate theory for noisy dynamical systems / Taux d'échappement dans les systèmes dynamiques bruités

Demaeyer, Jonathan 23 August 2013 (has links)
The escape of trajectories is a ubiquitous phenomenon in open dynamical systems and stochastic processes. If escape occurs repetitively for a statistical ensemble of trajectories, the population of remaining trajectories often undergoes an exponential decay characterised by the so-called escape rate. Its inverse defines the lifetime of the decaying state, which represents an intrinsic property of the system. This paradigm is fundamental to nucleation theory and reaction-rate theory in chemistry, physics, and biology.<p><p>In many circumstances, escape is activated by the presence of noise, which may be of internal or external origin. This is the case for thermally activated escape over a potential energy barrier and, more generally, for noise-induced escape in continuous-time or discrete-time dynamics. <p><p>In the weak-noise limit, the escape rate is often observed to decrease exponentially with the inverse of the noise amplitude, a behaviour which is given by the van't Hoff-Arrhenius law of chemical kinetics. In particular, the two important quantities to determine in this case are the exponential dependence (the ``activation energy') and its prefactor.<p><p>The purpose of the present thesis is to develop an analytical method to determine these two quantities. We consider in particular one-dimensional continuous and discrete-time systems perturbed by Gaussian white noise and we focus on the escape from the basin of attraction of an attracting fixed point.<p><p>In both classes of systems, using path-integral methods, a formula is deduced for the noise-induced escape rate from the attracting fixed point across an unstable fixed point, which forms the boundary of the basin of attraction. The calculation starts from the trace formula for the eigenvalues of the operator ruling the time evolution of the probability density in noisy maps. The escape rate is determined by the loop formed by two heteroclinic orbits connecting back and forth the two fixed points in a two-dimensional auxiliary deterministic dynamical system. The escape rate is obtained, including the expression of the prefactor to van't Hoff-Arrhenius exponential factor./L'échappement des trajectoires est un phénomène omniprésent dans les systèmes dynamiques ouverts et les processus stochastiques. Si l'échappement se produit de façon répétitive pour un ensemble statistique de trajectoires, la population des trajectoires restantes subit souvent une décroissance exponentielle caractérisée par le taux d'échappement. L'inverse du taux d'échappement définit alors la durée de vie de l'état transitoire associé, ce qui représente une propriété intrinsèque du système. Ce paradigme est fondamental pour la théorie de la nucléation et, de manière générale, pour la théorie des taux de transitions en chimie, en physique et en biologie.<p><p>Dans de nombreux cas, l'échappement est induit par la présence de bruit, qui peut être d'origine interne ou externe. Ceci concerne en particulier l'échappement activé thermiquement à travers une barrière d'énergie potentielle, et plus généralement, l'échappement dû au bruit dans les systèmes dynamiques à temps continu ou à temps discret.<p><p>Dans la limite de faible bruit, on observe souvent une décroissance exponentielle du taux d'échappement en fonction de l'inverse de l'amplitude du bruit, un comportement qui est régi par la loi de van't Hoff-Arrhenius de la cinétique chimique. En particulier, les deux quantités importantes de cette loi sont le coefficient de la dépendance exponentielle (c'est-à-dire ``l'énergie d'activation') et son préfacteur.<p><p>L'objectif de cette thèse est de développer une théorie analytique pour déterminer ces deux quantités. La théorie que nous présentons concerne les systèmes unidimensionnels à temps continu ou discret perturbés par un bruit blanc gaussien et nous considérons le problème de l'échappement du bassin d'attraction d'un point fixe attractif. Pour s'échapper, les trajectoires du système bruité initialement contenues dans ce bassin d'attraction doivent alors traverser un point fixe instable qui forme la limite du bassin.<p><p>Dans le présent travail, et pour les deux types de systèmes, une formule est dérivée pour le taux d'échappement du point fixe attractif en utilisant des méthodes d'intégrales de chemin. Le calcul utilise la formule de trace pour les valeurs propres de l'opérateur gouvernant l'évolution temporelle de la densité de probabilité dans le système bruité. Le taux d'échappement est déterminé en considérant la boucle formée par deux orbites hétéroclines liant dans les deux sens les deux points fixes dans un système dynamique auxiliaire symplectique et bidimensionnel. On obtient alors le taux d'échappement, comprenant l'expression du préfacteur de l'exponentielle de la loi de van't Hoff-Arrhenius. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1554 seconds