51 |
Guaranteed robustness properties of multivariable, nonlinear, stochastic optimal regulatorsJanuary 1983 (has links)
John N. Tsitsiklis, Michael Athans. / "February 1983." / Bibliography: p. 10-11. / grant NASA/NGL-22-009-124
|
52 |
Influência de dissipação em mapas bidimensionais /Kato, Laryssa Kimi. January 2018 (has links)
Orientador: Ricardo Egydio de Carvalho / Banca: Ana Paula Mijolaro / Banca: Luiz Antônio Barreiro / Resumo: De maneira geral, o comportamento dinâmico de sistemas não lineares é caracterizado pela imprevisibilidade e extrema sensibilidade às condições iniciais e aos parâmetros do sistema. A sensibilidade dessas condições pode ser analisada a partir dos expoentes de Lyapunov, quando são consideradas órbitas infinitesimalmente próximas. O mapa escolhido para análise é o modelo denominado "Mapa padrão não - twist dissipativo labiríntico", que apresenta as chamadas curvas shearless. O estudo desenvolvido analisa esse sistema com a introdução de dissipação e com parâmetros de perturbação variáveis na presença de três curvas shearless. O objetivo é compreender a evolução da dinâmica destas curvas no espaço de fase e no diagrama de Lyapunov a fim de caracterizar qual shearless é mais robusta frente á variação dos parâmetros de dissipação e perturbação / Abstract: In general, the dynamical behavior of non-linear systems is characterized by unpredictability and extreme sensibility to the initial conditions and to the parameters of the system. The sensitivity of these conditions can be analyzed from the Lyapunov exponents, when infinitesimally close orbits are considered. The map we have chosen for analysis is the model denoted as "Labyrinthic non-twist standard map", which presents the so-called "shearless" curves. The present study analyzes this system with the introduction of dissipation and with changeable parameters of perturbation in the presence of three shearless curves. The objective is to understand the evolution of the dynamics of the curves in the phase space and in the diagram of Lyapunov in order to characterize which shearless is more robust under the variation of both parameters, dissipation and perturbation / Mestre
|
53 |
Suspensões de Poisson, ergodicidade e o teorema central do limiteLenarduzzi, Fernando Nera [UNESP] 11 September 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-09-11Bitstream added on 2014-06-13T20:47:15Z : No. of bitstreams: 1
lenarduzzi_fn_me_sjrp.pdf: 432607 bytes, checksum: 6e0e82d0a71ba0e530e2f097612c9be5 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo principal deste trabalho e estudar os resultados apresentados por R. Zeimuller em Poisson Suspensions of Compactly Regenerative Transformations[Z0]. Neste artigo, partindo de um espaço de medida σ-finito (X;A;μ) com uma transformação ergódica T, o autor consideração de T em poeiras enumeráveis de pontos, o que define uma transformação T num espaço de probabilidade ~ X. Será mostrado que ~ T e invariante e ergódica para uma medida ~μ em ~ X, que est a relacionada com estes conjuntos enumer aveis de pontos. Apesar de não valer o teorema de Birkhoff para o espaço inicial (X;A;μ ) que tem medida infinita, vale a convergência das médias ergódicas neste novo espaço, o que permite recuperar a medida de um conjunto A em termos do número de visitas a A se forem consideradas órbitas de conjuntos enumeráveis ~ μ-típicos ao invés de olhar para a órbita de um só ponto. São estabelecidas ainda condições suficientes para obter um Teorema Central do Limite que acompanha o teorema ergódico de Birkhoff para ~Sn . Também em faremos um breve estudo sobre conservatividade de aplicações em espa ços σ-nito com medida total infinita, taxa de errância de conjuntos de medida positiva e medida aleatória de Poisson / The main purpose of this work is to understand the results presented by R. Zeimuller on his paper Poisson Suspensions of Compactly Regenerative Transformati-ons[Z0]. In this paper, considering σ- nite space (X;A;μ) and a ergodic transformation T, the author considers the action of T on a countable ensemble of points, which de nes a transformation ~ acting on another probability space ~ X. It will be proved that ~ T is invariant and ergodic for a measure ~μ on ~ X, which is related to this countable set of points. We know that Birkhoff's ergodic theorem is not valid on its classical formulation to a in nite measure space (X;A;μ), however we have the convergence of the ergodic means on this new space. This allows us to, somehow, recover the measure of a given set A just looking at the number of its visits considering the orbits of a ~ μ-typical coun-table set instead of looking at the orbit of one single point. It is also established some su cient conditions in order to get a Central Limit Theorem for ~ Sn . We'll also make a brief discussion on conservativity of maps on σ-finite spaces with full measure in nity, wandering rate of positive measure and Poisson random measure. We'll also make a brief discussion on conservativity of maps on σ-finite spaces with full measure in nity, wandering rate of positive measure and Poisson random measure
|
54 |
Efficient uncertainty propagation schemes for dynamical systems with stochastic finite element analysisKundu, Abhishek January 2014 (has links)
Efficient uncertainty propagation schemes for dynamical systems are investigated here within the framework of stochastic finite element analysis. Uncertainty in the mathematical models arises from the incomplete knowledge or inherent variability of the various parametric and geometric properties of the physical system. These input uncertainties necessitate the use of stochastic mathematical models to accurately capture their behavior. The resolution of such stochastic models is computationally quite expensive. This work is concerned with development of model order reduction techniques for obtaining the dynamical response statistics of stochastic finite element systems. Efficient numerical methods have been proposed to propagate the input uncertainty of dynamical systems to the response variables. Response statistics of randomly parametrized structural dynamic systems have been investigated with a reduced spectral function approach. The frequency domain response and the transient evolution of the response of randomly parametrized structural dynamic systems have been studied with this approach. An efficient discrete representation of the input random field in a finite dimensional stochastic space is proposed here which has been integrated into the generic framework of the stochastic finite element weak formulation. This framework has been utilized to study the problem of random perturbation of the boundary surface of physical domains. Truncated reduced order representation of the complex mathematical quantities which are associated with the stochastic isoparametric mapping of the random domain to a deterministic master domain within the stochastic Galerkin framework have been provided. Lastly, an a-priori model reduction scheme for the resolution of the response statistics of stochastic dynamical systems has also been studied here which is based on the concept of balanced truncation. The performance and numerical accuracy of the methods proposed in this work have been exemplified with numerical simulations of stochastic dynamical systems and the convergence behavior of various error indicators.
|
55 |
Suspensões de Poisson, ergodicidade e o teorema central do limite /Lenarduzzi, Fernando Nera. January 2013 (has links)
Orientador: Ali Messaoudi / Coorientador: Patricia Romano Cirilo / Banca: Carlos Gustavo Tamm de Araujo Moreira / Banca: Claudio Aguinaldo Buzzi / Resumo: O objetivo principal deste trabalho e estudar os resultados apresentados por R. Zeimuller em Poisson Suspensions of Compactly Regenerative Transformations[Z0]. Neste artigo, partindo de um espaço de medida σ-finito (X;A;μ) com uma transformação ergódica T, o autor consideração de T em "poeiras" enumeráveis de pontos, o que define uma transformação T num espaço de probabilidade ~ X. Será mostrado que ~ T e invariante e ergódica para uma medida ~μ em ~ X, que est a relacionada com estes conjuntos enumer aveis de pontos. Apesar de não valer o teorema de Birkhoff para o espaço inicial (X;A;μ ) que tem medida infinita, vale a convergência das médias ergódicas neste novo espaço, o que permite recuperar a medida de um conjunto A em termos do número de visitas a A se forem consideradas órbitas de conjuntos enumeráveis ~ μ-típicos ao invés de olhar para a órbita de um só ponto. São estabelecidas ainda condições suficientes para obter um Teorema Central do Limite que acompanha o teorema ergódico de Birkhoff para ~Sn . Também em faremos um breve estudo sobre conservatividade de aplicações em espa ços σ-nito com medida total infinita, taxa de errância de conjuntos de medida positiva e medida aleatória de Poisson / Abstract: The main purpose of this work is to understand the results presented by R. Zeimuller on his paper Poisson Suspensions of Compactly Regenerative Transformati-ons[Z0]. In this paper, considering σ- nite space (X;A;μ) and a ergodic transformation T, the author considers the action of T on a countable "ensemble" of points, which de nes a transformation ~ acting on another probability space ~ X. It will be proved that ~ T is invariant and ergodic for a measure ~μ on ~ X, which is related to this countable set of points. We know that Birkhoff's ergodic theorem is not valid on its classical formulation to a in nite measure space (X;A;μ), however we have the convergence of the ergodic means on this new space. This allows us to, somehow, recover the measure of a given set A just looking at the number of its visits considering the orbits of a ~ μ-typical coun-table set instead of looking at the orbit of one single point. It is also established some su cient conditions in order to get a Central Limit Theorem for ~ Sn . We'll also make a brief discussion on conservativity of maps on σ-finite spaces with full measure in nity, wandering rate of positive measure and Poisson random measure. We'll also make a brief discussion on conservativity of maps on σ-finite spaces with full measure in nity, wandering rate of positive measure and Poisson random measure / Mestre
|
56 |
A Study of the Dynamic Control of the Inverted Pendulum SystemAng, Koon T. 01 January 1986 (has links) (PDF)
This report describes the simulation of an inverted pendulum control system. The purpose is to provide an interesting learning process through high resolution color graphics animations in the control of dynamic systems. The software uses the graphic capabilities extensively to make it very user-friendly and highly interactive. A numerical analysis method is used to solve the systems of equations. The animation driven by the results is then displayed on the video terminal. Facilities range from selection of controllers, changing of system parameters, plotting graphs, and hardcopy outputs.
|
57 |
Perturbation theory for the topological pressure in analytic dynamical systemsMichalski, Milosz R. 12 October 2005 (has links)
We develop a systematic approach to the problem of finding the perturbative expansion for the topological pressure for an analytic expanding dynamics (/, M) on a Riemannian manifold M. The method is based on the spectral analysis of the transfer operator C. We show that in typical cases, when / depends real-analytically on a set of perturbing parameters ,", the related operators C~ form an analytic family. This gives rise to the rigorous construction of the power series expansion for the pressure via the analytic perturbation theory for eigenvalues, [Kato]. Consequently, the pressure and related dynamical indices, such as dimension spectra, Lyapunov exponents, escape rates and Renyi entropies inherit the real-analyticity in ~ from (I,M). / Ph. D.
|
58 |
On non-archimedean dynamical systemsJoyner, Sheldon T 12 1900 (has links)
Thesis (MSc) -- University of Stellenbosch, 2000. / ENGLISH ABSTRACT: A discrete dynamical system is a pair (X, cf;) comprising a non-empty set X and a map
cf; : X ---+ X. A study is made of the effect of repeated application of cf; on X, whereby points
and subsets of X are classified according to their behaviour under iteration. These subsets
include the JULIA and FATOU sets of the map and the sets of periodic and preperiodic
points, and many interesting questions arise in the study of their properties.
Such questions have been extensively studied in the case of complex dynamics, but much
recent work has focussed on non-archimedean dynamical systems, when X is projective
space over some field equipped with a non-archimedean metric. This work has uncovered
many parallels to complex dynamics alongside more striking differences.
In this thesis, various aspects of the theory of non-archimedean dynamics are presented,
with particular reference to JULIA and FATOU sets and the relationship between good
reduction of a map and the empty JULIA set. We also discuss questions of the finiteness
of the sets of periodic points in special contexts. / AFRIKAANSE OPSOMMING: 'n Paar (X, <jJ) bestaande uit 'n nie-leë versameling X tesame met 'n afbeelding <jJ: X -+ X
vorm 'n diskrete dinamiese sisteem. In die bestudering van so 'n sisteem lê die klem op
die uitwerking op elemente van X van herhaalde toepassing van <jJ op die versameling.
Elemente en subversamelings van X word geklasifiseer volgens dinamiese kriteria en op
hierdie wyse ontstaan die JULIA en FATOU versamelings van die afbeelding en die versamelings
van periodiese en preperiodiese punte. Interessante vrae oor die eienskappe van
hierdie versamelings kom na vore.
In die geval van komplekse dinamika is sulke vrae reeds deeglik bestudeer, maar onlangse
werk is op nie-archimediese dinamiese sisteme gedoen, waar X 'n projektiewe ruimte is
oor 'n liggaam wat met 'n nie-archimediese norm toegerus is. Hierdie werk het baie
ooreenkomste maar ook treffende verskille met die komplekse dinamika uitgewys.
In hierdie tesis word daar ondersoek oor verskeie aspekte van die teorie van nie-archimediese
dinamika ingestel, in besonder met betrekking tot die JULIA en FATOU versamelings en
die verband tussen goeie reduksie van 'n afbeelding en die leë JULIA versameling. Vrae
oor die eindigheid van versamelings van periodiese punte in spesiale kontekste word ook
aangebied.
|
59 |
Modelo do bulbo olfativo baseado em redes neurais recorrentes /Ferro, Luciano. January 2007 (has links)
Orientador: José Roberto Campanha / Banca: Márcio Luiz de Andrade Netto / Banca: Gerson Antonio Santarine / Resumo: Neste trabalho construímos modelos de redes neurais artificiais recorrentes com dois, com quatro, com seis e com oito neurônios na tentativa de simular computacionalmente como os neurônios receptores olfativos dos vertebrados, em especial dos seres humanos, conseguem identificar e reconhecer as diferentes moléculas odoríferas (ou odorantes) transportadas pelo ar. Para isso, usamos uma rede que evolui de um sistema dinâmico caótico, na ausência de odorantes, para o não-caótico, quando do reconhecimento de um odor constituído, no máximo, de até três odorantes. / Abstract: We built models of recurrent artificial neural networks with two, four, six and eight neurons in order to simulate, using computational simulation, the way vertebrates olfactory neurons, in special the humans, identify and recognize different odoriferous molecules (or odorants) in the air. For that purpose, we used a network that evolves from a chaotic dynamic system, in the absence of odorants, to the non-chaotic, when it recognizes an odor that is made of, at most, three odorants. / Mestre
|
60 |
Bilhares dependentes do tempo : um mecanismo para suprimir aceleração de Fermi /Oliveira, Diego Fregolente Mendes de. January 2009 (has links)
Orientador: Edson Denis Leonel / Banca: Mario Roberto da Silva / Banca: Roberto Venegeroles Nascimento / Resumo: O problema de bilhar teve origem em 1927 quando G.D. Birkhoff considerou um sistema para descrever o movimento de uma partícula livre dentro de uma região fechada por uma fronteira com a qual sofre colisões. Ao atingir a fronteira a partícula é refletida e viaja com velocidade constante até a próxima colisão. Nesse trabalho consideramos um modelo bidimensional conhecido na literatura como Bilhar Elíptico-ovóide. O raio da fronteira em coordenadas polares é dado por R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). Este modelo comporta-se como uma combinação dos bilhares elíptico e ovóide. Se considerarmos o caso em que a excentricidade e = 0 recuperamos os resultados para o bilhar ovóide, por outro lado, se a deformação na fronteira for nula, є = 0, os resultados para o bilhar elíptico são recuperados. Tal modelo consiste em considerar o movimento de uma partícula clássica de massa m movendo-se livremente no interior de uma região fechada. Ao colidir com a fronteira a trajetória da partícula muda de direção sem sofrer perdas de energia. Encontramos as expressões que descrevem a dinâmica do modelo nas variáveis posição angular e ângulo que a trajetória faz com a reta tangente à curva no ponto de colisão e discutimos nossos resultados numéricos. Observamos que o espaço de fases é do tipo misto, contendo ilhas do tipo Kolmogorov-Arnold-Moser (KAM) geralmente envoltas por um mar de caos, caracterizado por um expoente de Lyapunov positivo, e curvas invariantes do tipo spanning separando diferente regiões do espaço de fases. Entretanto, à medida que os parâmetros de controle são variados, a forma da fronteira se altera, podendo ocorrer que algumas regiões da fronteira passam a ter curvatura negativa. Uma implicação imediata deste comportamento é a destruição das curvas invariantes spanning no espaço de fases. ...(Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The interest in understanding the dynamics of billiard problems becomes in earlies 1927 when Birkhoff introduced a system to describe the motion of a free particle inside a closed region with which the particle suffers elastic collisions. Inside the billiard, a point particle of mass m moves freely along a straight line until it hits the boundary. After the collision, it is assumed that the particle is specularly reflected. In our work we propose a special geometry for the boundary of a classical billiard, which we call as elliptical-oval boundary. The radius of the boundary in polar coordinates is given by R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). It is important to say that the shape of the boundary is controlled by three relevant control parameters, namely p=integer number, є = deformation of the boundary and e is the eccentricity. We obtain and discuss some numerical results considering different possibles combination of the control parameters. In our approach, we obtained a map that describe the particle's dynamics and show that there are a critical value for the parameter є. We show that the phase space has different structures when є > єc and є < єc. Finaly, we obtained the positive Lyapunov Exponent reinforcing that the model has a chaotic behaviour. After studying the static version, we revisit the problem of a classical particle bouncing elastically inside a periodically time varying Oval billiard. The problem is described using a four dimensional mapping for the variables velocity of the particle; time immediately after a collision with the moving boundary; the angle that the trajectory of the particle does with the tangent at the position of the hit; and the angular position of the particle along the boundary. Our main goal is to understand and describe the behaviour of the particle's average velocity (and hence its energy) as a function of the number of ...(Complete abstract click electronic access below) / Mestre
|
Page generated in 0.1194 seconds