Spelling suggestions: "subject:"diffusion chamber""
11 |
Models for the Transfer of Drugs from the Nasal Cavity to the Central Nervous SystemJansson, Björn January 2004 (has links)
<p>The blood-brain barrier restricts the access of many compounds, including therapeutic agents, to the brain. Several human studies indicate that nasal administration of hydrophilic compounds, such as peptides, can bypass the blood-brain barrier. The aims of this thesis were to develop and refine models for this direct nose-to-brain transfer.</p><p>In a mouse model, [<sup>3</sup>H]-dopamine was given as a unilateral nasal dose. The resulting radioactivity in the ipsilateral olfactory bulb was significantly higher than that in the contralateral bulb and peaked at 4 h. Tape section autoradiography showed that the radioactivity was concentrated in the olfactory nerve layer and the glomerular layer of the olfactory bulb. The olfactory transfer of dopamine was also studied <i>in vitro</i>. At a lower donor concentration, the mucosal-to-serosal dopamine permeability was higher than the serosal-to-mucosal permeability, but at a higher concentration, the permeability coefficients were similar. Together, these results suggest that the olfactory transfer of dopamine has an active component.</p><p>Olfactory transfer of fluorescein-labeled dextran through the epithelium and deeper tissues was studied in a rat model, which enabled visualization of the transfer using fluorescence microscopy. Although the epithelial transfer appeared to be mainly intracellular, transfer in the following deeper tissues was extracellular. Without altering the route of uptake, a gellan gum formulation enhanced the uptake of fluorescein dextran. The enhancing effect was considered likely to be the result of an increased residence time in the nasal cavity.</p><p>In conclusion, dopamine and fluorescein-labeled dextran were identified as suitable model compounds for the study of olfactory drug transfer mechanisms and the influence of drug formulation. Two new <i>in vitro</i> models of olfactory transfer were compared. Also, a rat model, which enabled the visualization of the entire nose-to-brain transfer, was developed.</p>
|
12 |
Models for the Transfer of Drugs from the Nasal Cavity to the Central Nervous SystemJansson, Björn January 2004 (has links)
The blood-brain barrier restricts the access of many compounds, including therapeutic agents, to the brain. Several human studies indicate that nasal administration of hydrophilic compounds, such as peptides, can bypass the blood-brain barrier. The aims of this thesis were to develop and refine models for this direct nose-to-brain transfer. In a mouse model, [3H]-dopamine was given as a unilateral nasal dose. The resulting radioactivity in the ipsilateral olfactory bulb was significantly higher than that in the contralateral bulb and peaked at 4 h. Tape section autoradiography showed that the radioactivity was concentrated in the olfactory nerve layer and the glomerular layer of the olfactory bulb. The olfactory transfer of dopamine was also studied in vitro. At a lower donor concentration, the mucosal-to-serosal dopamine permeability was higher than the serosal-to-mucosal permeability, but at a higher concentration, the permeability coefficients were similar. Together, these results suggest that the olfactory transfer of dopamine has an active component. Olfactory transfer of fluorescein-labeled dextran through the epithelium and deeper tissues was studied in a rat model, which enabled visualization of the transfer using fluorescence microscopy. Although the epithelial transfer appeared to be mainly intracellular, transfer in the following deeper tissues was extracellular. Without altering the route of uptake, a gellan gum formulation enhanced the uptake of fluorescein dextran. The enhancing effect was considered likely to be the result of an increased residence time in the nasal cavity. In conclusion, dopamine and fluorescein-labeled dextran were identified as suitable model compounds for the study of olfactory drug transfer mechanisms and the influence of drug formulation. Two new in vitro models of olfactory transfer were compared. Also, a rat model, which enabled the visualization of the entire nose-to-brain transfer, was developed.
|
13 |
Effects of plant extracts and phytoconstituents on the intestinal transport of indinavir / K.H. Roos.Roos, Karin Hester January 2012 (has links)
There is a global rise in the use of herbal products in combination with allopathic medicines, while most patients do not inform their health care providers of the use of these natural products. Both pharmacodynamic and pharmacokinetic interactions between herbal products and conventional drugs must be avoided for the wellbeing of the patient. Increasing evidence from in vitro and in vivo studies indicate that changed drug pharmacokinetics by co-administered herbs may be attributed to modulation of efflux drug transporters such as P-glycoprotein (P-gp). Garlic (Allium sativum), lemon (Citrus limonum) and beetroot (Beta vulgaris) are widely used by human immunodeficiency virus (HIV) patients, especially following the pronouncement by a former President of South Africa and the Ministers of Health at that time who promoted the use of these botanicals in HIV patients.
The aim of this study was to measure the bi-directional in vitro transport of indinavir, a protease inhibitor, in the presence of crude extracts and pure phytoconstituents of A. sativum (L-alliin and diallyl disulphide), C. limonum (hesperidin and eriocitrin) and B. vulgaris (betaine monohydrate and ß-carotene) across excised porcine intestinal tissue in Sweetana-Grass diffusion chambers. In the negative control group, the transport of indinavir alone (200 M) was determined with no modulator added. In the positive control group, the transport of indinavir was determined in the presence of verapamil (100 M), a known P-gp related efflux inhibitor. The control experiments were used to indicate that the effects of the test compounds were caused by their action and not by chance interferences or external factors. Samples collected at pre-determined time intervals were analysed by means of a validated high performance liquid chromatography (HPLC) method and the transport was expressed as the apparent permeability coefficient (Papp) and the transepithelial flux (J) from which the efflux ratio (ER) and the net flux (Jnet) values were calculated. Statistical analysis was used to compare the results of the test compounds with the control groups in order to indicate significant differences.
The mean ER value for indinavir in the negative control group was 1.41 ± 0.170 and in the positive control group it was 0.56 ± 0.0426. Statistically significant (p < 0.05) inhibition of indinavir efflux as indicated by reduced ER values was obtained for L-alliin (ER = 0.280 ± 0.030), diallyl disulphide (ER = 0.505 ± 0.034) and ß-carotene (ER = 0.664 ± 0.075). Inhibition of indinavir efflux will lead to increased transport and therefore a potentially higher bioavailability. Statistically significant (p < 0.05) promotion of indinavir efflux as indicated by increased ER values was obtained for C. limonum crude extract (ER = 5.551 ± 0.575) and hesperidin (ER = 3.385 ± 0.477), which potentially may lead to lower bioavalability. B. vulgaris crude extract (p = 0.8452), betaine monohydrate (p = 0.9982), A. sativum crude extract (p = 0.7161) and eriocitrin (p = 0.4431) displayed no statistically significant effect compared to the negative control group on indinavir transport across excised porcine intestinal tissue.
The results from this study demonstrate that L-alliin, diallyl disulphide and ß-carotene have an inhibitory effect on indinavir efflux, which may significantly increase indinavir plasma levels after oral administration. C. limonum crude extract and hesperidin promote indinavir efflux, which may significantly reduce indinavir plasma levels. These pharmacokinetic interactions between certain drugs and plant extracts may negatively affect the anti-retroviral treatment of HIV patients, but deliberate and controlled inclusion of L-alliin, diallyl disulphide and ß-carotene in dosage forms may possibly cause more effective delivery of protease inhibitors after oral administration resulting in less frequent dosing intervals. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
14 |
Effects of plant extracts and phytoconstituents on the intestinal transport of indinavir / K.H. Roos.Roos, Karin Hester January 2012 (has links)
There is a global rise in the use of herbal products in combination with allopathic medicines, while most patients do not inform their health care providers of the use of these natural products. Both pharmacodynamic and pharmacokinetic interactions between herbal products and conventional drugs must be avoided for the wellbeing of the patient. Increasing evidence from in vitro and in vivo studies indicate that changed drug pharmacokinetics by co-administered herbs may be attributed to modulation of efflux drug transporters such as P-glycoprotein (P-gp). Garlic (Allium sativum), lemon (Citrus limonum) and beetroot (Beta vulgaris) are widely used by human immunodeficiency virus (HIV) patients, especially following the pronouncement by a former President of South Africa and the Ministers of Health at that time who promoted the use of these botanicals in HIV patients.
The aim of this study was to measure the bi-directional in vitro transport of indinavir, a protease inhibitor, in the presence of crude extracts and pure phytoconstituents of A. sativum (L-alliin and diallyl disulphide), C. limonum (hesperidin and eriocitrin) and B. vulgaris (betaine monohydrate and ß-carotene) across excised porcine intestinal tissue in Sweetana-Grass diffusion chambers. In the negative control group, the transport of indinavir alone (200 M) was determined with no modulator added. In the positive control group, the transport of indinavir was determined in the presence of verapamil (100 M), a known P-gp related efflux inhibitor. The control experiments were used to indicate that the effects of the test compounds were caused by their action and not by chance interferences or external factors. Samples collected at pre-determined time intervals were analysed by means of a validated high performance liquid chromatography (HPLC) method and the transport was expressed as the apparent permeability coefficient (Papp) and the transepithelial flux (J) from which the efflux ratio (ER) and the net flux (Jnet) values were calculated. Statistical analysis was used to compare the results of the test compounds with the control groups in order to indicate significant differences.
The mean ER value for indinavir in the negative control group was 1.41 ± 0.170 and in the positive control group it was 0.56 ± 0.0426. Statistically significant (p < 0.05) inhibition of indinavir efflux as indicated by reduced ER values was obtained for L-alliin (ER = 0.280 ± 0.030), diallyl disulphide (ER = 0.505 ± 0.034) and ß-carotene (ER = 0.664 ± 0.075). Inhibition of indinavir efflux will lead to increased transport and therefore a potentially higher bioavailability. Statistically significant (p < 0.05) promotion of indinavir efflux as indicated by increased ER values was obtained for C. limonum crude extract (ER = 5.551 ± 0.575) and hesperidin (ER = 3.385 ± 0.477), which potentially may lead to lower bioavalability. B. vulgaris crude extract (p = 0.8452), betaine monohydrate (p = 0.9982), A. sativum crude extract (p = 0.7161) and eriocitrin (p = 0.4431) displayed no statistically significant effect compared to the negative control group on indinavir transport across excised porcine intestinal tissue.
The results from this study demonstrate that L-alliin, diallyl disulphide and ß-carotene have an inhibitory effect on indinavir efflux, which may significantly increase indinavir plasma levels after oral administration. C. limonum crude extract and hesperidin promote indinavir efflux, which may significantly reduce indinavir plasma levels. These pharmacokinetic interactions between certain drugs and plant extracts may negatively affect the anti-retroviral treatment of HIV patients, but deliberate and controlled inclusion of L-alliin, diallyl disulphide and ß-carotene in dosage forms may possibly cause more effective delivery of protease inhibitors after oral administration resulting in less frequent dosing intervals. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
Page generated in 0.0829 seconds