• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fracture processes in wood chipping

Hellström, Lisbeth January 2008 (has links)
<p>In both the chemical and mechanical pulping process, the logs are cut into wood chips by a disc chipper before fibre separation. To make the wood chipping process more efficient, one have to investigate in detail the coupling between theprocess parameters and the quality of the chips. The objective of this thesis is to obtain an understanding of the fundamental mechanisms behind the creation of wood chips. Both experimental and analytical/numerical approaches have been taken inthis work. The experimental investigations were performed with an in‐house developed equipment and a digital speckle photography equipment. The results from the experimental investigation showed that the friction between the log and chipping tool is probably one crucal factor for the chip formation. Further more it was found that the indentation process is approximately self‐similar, and that the stress field over the entire crack‐plane is critical for chip creation. The developed analytical model predicts the normal and shear strain distribution. The analytical distributions are in reasonable agreement with the corresponding distributions obtained from a finite element analysis.</p>
2

Fracture processes in wood chipping

Hellström, Lisbeth January 2008 (has links)
In both the chemical and mechanical pulping process, the logs are cut into wood chips by a disc chipper before fibre separation. To make the wood chipping process more efficient, one have to investigate in detail the coupling between theprocess parameters and the quality of the chips. The objective of this thesis is to obtain an understanding of the fundamental mechanisms behind the creation of wood chips. Both experimental and analytical/numerical approaches have been taken inthis work. The experimental investigations were performed with an in‐house developed equipment and a digital speckle photography equipment. The results from the experimental investigation showed that the friction between the log and chipping tool is probably one crucal factor for the chip formation. Further more it was found that the indentation process is approximately self‐similar, and that the stress field over the entire crack‐plane is critical for chip creation. The developed analytical model predicts the normal and shear strain distribution. The analytical distributions are in reasonable agreement with the corresponding distributions obtained from a finite element analysis.
3

On the wood chipping process : a study on basic mechanisms in order to optimize chip properties for pulping

Hellström, Lisbeth January 2010 (has links)
In both the chemical and mechanical pulping process, the logs are cut into wood chips by a disc chipper before fibre separation. To make the wood chipping process more efficient, one have to investigate in detail the coupling between process parameters and the quality of the chips. One objective of this thesis was to obtain an understanding of the fundamental mechanisms behind the creation of wood chips. Another objective with the thesis was to investigate whether it was possible to, in a way tailor the chipping process so as to reduce the energy consumption in a following mechanical refining process. Both experimental and analytical/numerical approaches have been taken in this work. The first part of the experimental investigations, were performed with an in-house developed chipping device and a digital speckle photography equipment. The results from the experimental investigation showed that the friction between the log and chipping tool is probably one crucial factor for the chip formation. Further more it was found that the indentation process is approximately self-similar, and that the stress field over the entire crack-plane is critical for chip creation. The developed analytical model predicts the normal and shear strain distribution and to be more specific, the model can predict the compressive stresses parallel to the fibre direction for an assumed linear elastic and orthotropic material. The analytical distributions were found to be in reasonable agreement with the corresponding distributions obtained from a finite element analysis. To be able to study the chipping process under realistic conditions, which for example means to use chipping rates representative for a real wood chipper, a laboratory chipper was developed. Details regarding the chipper and how to evaluate the force measurements are given together with an example of how the force on the cutting tool (the knife) varies with time during cutting. To investigate the influence of a certain chipping process parameter, the chips were after production in the laboratory chipper, refined in a pilot refiner during conditions optimized for TMP (thermomechanical pulp) and CTMP (chemithermomechanical pulp) processes. It was concluded that the details concerning the chip process had a large impact on e.g. the energy consumption in both first stage and second stage refining. Results showing this are given in this thesis. / För både kemisk och mekanisk pappersmassa så tillverkas flis av trädstockar med hjälp av en skivhugg innan fibrerna separeras. För att göra flisningsprocessen mer effektiv, måste kopplingen mellan processparametrar och fliskvalitet studeras. Ett mål med denna avhandling är att ge fundamental kunskap om mekanismerna bakom bildandet av träflis. Både experimentella och analytiska/numeriska metoder har använts i detta arbete. De experimentella undersökningarna har gjorts med hjälp av egen utvecklad utrustning. Resultaten från den experimentella undersökningen visar att friktionen mellan stammen och flisningsverktyget har betydelse vid flisning. Vidare observerades det att inträngnings processen är approximativt självlik (self similar) och att det är spänningsfältet över hela sprickplanet som är kritiskt för bildandet av en flis. Den utvecklade analytiska modellen förutsäger normal- och skjuvspänningsfördelningen över sprickplanet och kan mer specifikt förutsäga den kompressiva belastning som verkar parallellt fiberriktningen i ett linjärt elastiskt och ortotropt material (trä). De analytiskt bestämda fördelningarna stämmer relativt väl överens med motsvarande fördelningar beräknad med finit element analys. För att kunna studera flisningsprocessen under realistiska förhållanden, vilket bl.a. betyder att skärhastigheter som är representativa för en verklig process skall användas, så utvecklades inom ramen för avhandlingsarbetet, en laboratoriesflishugg. Detaljer rörande flishuggen samt hur uppmätta lastsignaler skall utvärderas ges tillsammans med ett exmpel på hur kraften på skärverktyget (kniven) varierar under ett skärförlopp. Inverkan av en viss flisningsprocessparameter undersöktes genom att flis tillverkades i laboratorieflishuggen varefter de raffinerades i en pilotraffinör under förhållanden som var optimerade för TMP (termomekanisk massa) och CTMP (kemitermomekanisk massa) processerna. Det konstaterades att detaljer i flisningsprocessen hade stor inverkan på t.ex. energiåtgången i både första stegs – och andrastegsraffinering. Resultat som verifierar detta ges i avhandlingen. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Submitted. Paper 5: Submitted.</p>
4

Mechanics of Cross-Laminated Timber

Buck, Dietrich January 2018 (has links)
Increasing awareness of sustainable building materials has led to interest in enhancing the structural performance of engineered wood products. Wood is a sustainable, renewable material, and the increasing use of wood in construction contributes to its sustainability. Multi-layer wooden panels are one type of engineered wood product used in construction. There are various techniques to assemble multi-layer wooden panels into prefabricated, load-bearing construction elements. Assembly techniques considered in the earliest stages of this research work were laminating, nailing, stapling, screwing, stress laminating, doweling, dovetailing, and wood welding. Cross-laminated timber (CLT) was found to offer some advantages over these other techniques. It is cost-effective, not patented, offers freedom of choice regarding the visibility of surfaces, provides the possibility of using different timber quality in the same panel at different points of its thickness, and is the most well-established assembly technique currently used in the industrial market. Building upon that foundational work, the operational capabilities of CLT were further evaluated by creating panels with different layer orientations. The mechanical properties of CLT panels constructed with layers angled in an alternative configuration produced on a modified industrial CLT production line were evaluated. Timber lamellae were adhesively bonded in a single-step press procedure to form CLT panels. Transverse layers were laid at a 45° angle instead of the conventional 90° angle with respect to the longitudinal layers’ 0° angle. Tests were carried out on 40 five-layered CLT panels, each with either a ±45° or a 90° configuration. Half of these panels were evaluated under bending: out-of-plane loading was applied in the principal orientation of the panels via four-point bending. The other twenty were evaluated under compression: an in-plane uniaxial compressive loading was applied in the principal orientation of the panels. Quasi-static loading conditions were used for both in- and out-of-plane testing to determine the extent to which the load-bearing capacity of such panels could be enhanced under the current load case. Modified CLT showed higher stiffness, strength, and fifth-percentile characteristics, values that indicate the load-bearing capacity of these panels as a construction material. Failure modes under in- and out-of-plane loading for each panel type were also assessed. Data from out-of-plane loading were further analysed. A non-contact full-field measurement and analysis technique based on digital image correlation (DIC) was utilised for analysis at global and local scales. DIC evaluation of 100 CLT layers showed that a considerable part of the stiffness of conventional CLT is reduced by the shear resistance of its transverse layers. The presence of heterogeneous features, such as knots, has the desirable effect of reducing the propagation of shear fraction along the layers. These results call into question the current grading criteria in the CLT standard. It is suggested that the lower timber grading limit be adjusted for increased value-yield. The overall experimental results suggest the use of CLT panels with a ±45°-layered configuration for construction. They also motivate the use of alternatively angled layered panels for more construction design freedom, especially in areas that demand shear resistance. In addition, the design possibility that such 45°-configured CLT can carry a given load while using less material than conventional CLT suggests the potential to use such panels in a wider range of structural applications. The results of test production revealed that 45°-configured CLT can be industrially produced without using more material than is required for construction of conventional 90°-configured panels. Based on these results, CLT should be further explored as a suitable product for use in more wooden-panel construction. / <p>External cooperation: Martinson Group AB and Research Institutes of Sweden (RISE)</p>

Page generated in 0.0654 seconds