• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 15
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 21
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Reproducible geoscientific modelling with hypergraphs

Semmler, Georg 04 September 2023 (has links)
Reproducing the construction of a geoscientific model is a hard task. It requires the availability of all required data and an exact description how the construction was performed. In practice data availability and the exactness of the description is often lacking. As part of this thesis I introduce a conceptual framework how geoscientific model constructions can be described as directed acyclic hypergraphs, how such recorded construction graphs can be used to reconstruct the model, and how repetitive constructions can be used to verify the reproducibility of a geoscientific model construction process. In addition I present a software prototype, implementing these concepts. The prototype is tested with three different case studies, including a geophysical measurement analysis, a subsurface model construction and the calculation of a hydrological balance model.:1. Introduction 1.1. Survey on Reproducibility and Automation for Geoscientific Model Construction 1.2. Motivating Example 1.3. Previous Work 1.4. Problem Description 1.5. Structure of this Thesis 1.6. Results Accomplished by this Thesis 2. Terms, Definitions and Requirements 2.1. Terms and Definitions 2.1.1. Geoscientific model 2.1.2. Reproducibility 2.1.3. Realisation 2.2. Requirements 3. Related Work 3.1. Overview 3.2. Geoscientific Data Storage Systems 3.2.1. PostGIS and Similar Systems 3.2.2. Geoscience in Space and Time (GST) 3.3. Geoscientific Modelling Software 3.3.1. gOcad 3.3.2. GemPy 3.4. Experimentation Management Software 3.4.1. DataLad 3.4.2. Data Version Control (DVC) 3.5. Reproducible Software Builds 3.6. Summarised Releated Work 4. Concept 4.1. Construction Hypergraphs 4.1.1. Reproducibility Based on Construction Hypergraphs 4.1.2. Equality definitions 4.1.3. Design Constraints 4.2. Data Handling 5. Design 5.1. Application Structure 5.1.1. Choice of Application Architecture for GeoHub 5.2. Extension Mechanisms 5.2.1. Overview 5.2.2. A Shared Library Based Extension System 5.2.3. Inter-Process Communication Based Extension System 5.2.4. An Extension System Based on a Scripting Language 5.2.5. An Extension System Based on a WebAssembly Interface 5.2.6. Comparison 5.3. Data Storage 5.3.1. Overview 5.3.2. Stored Data 5.3.3. Potential Solutions 5.3.4. Model Versioning 5.3.5. Transactional security 6. Implementation 6.1. General Application Structure 6.2. Data Storage 6.2.1. Database 6.2.2. User-provided Data-processing Extensions 6.3. Operation Executor 6.3.1. Construction Step Descriptions 6.3.2. Construction Step Scheduling 6.3.3. Construction Step Execution 7. Case Studies 7.1. Overview 7.2. Geophysical Model of the BHMZ block 7.2.1. Provided Data and Initial Situation 7.2.2. Construction Process Description 7.2.3. Reproducibility 7.2.4. Identified Problems and Construction Process Improvements 7.2.5. Recommendations 7.3. Three-Dimensional Subsurface Model of the Kolhberg Region 7.3.1. Provided Data and Initial Situation 7.3.2. Construction Process Description 7.3.3. Reproducibility 7.3.4. Identified Problems and Construction Process Improvements 7.3.5. Recommendations 7.4. Hydrologic Balance Model of a Saxonian Stream 7.4.1. Provided Data and Initial Situation 7.4.2. Construction Process Description 7.4.3. Reproducibility 7.4.4. Identified Problems and Construction Process Improvements 7.4.5. Recommendations 7.5. Lessons Learned 8. Conclusions 8.1. Summary 8.2. Outlook 8.2.1. Parametric Model Construction Process 8.2.2. Pull and Push Nodes 8.2.3. Parallelize Single Construction Steps 8.2.4. Provable Model Construction Process Attestation References Appendix
42

UAV Vermessung im Bergbau - Stand der Forschung und Ausblick

Tscharf, Alexander, Rumpler, Markus, Mayer, Gerhard, Fraundorfer, Friedrich, Bischof, Horst 29 July 2016 (has links)
Die Herstellung von optisch realistischen und hochgenauen 3D Modellen stellt eine zentrale Frage im Bereich der geodätischen und markscheiderischen Forschung dar. Mit dem zusehenden Aufkommen unbemannter Flugsysteme haben sich photogrammetrische Messsysteme als erschwingliche und flexible Alternative etabliert, wobei zur Gewährleistung definierter Genauigkeiten und somit zur Verwendung vergleichbarer Systeme für vermessungstechnische Anwendungen eine sorgfältige Flugplanung, Durchführung und Auswertung unbedingte Erfordernisse sind. Im vorliegenden Beitrag wird einerseits auf die laufenden Forschungen zu Genauigkeit und Anwendbarkeit der UAV-basierten Vermessung im Bergbau eingegangen und andererseits werden zukünftige Forschungstendenzen aufgezeigt, wodurch in neue, bislang nicht erreichbare Anwendungsfelder, vorgedrungen werden könnte. / Creating and visualizing realistic and accurate 3D models is a central ambition of research in the field of geodesy and mine surveying. Due to the increasing affordability of un-manned aerial vehicles (UAVs) photogrammetric systems have been well established as affordable and flexible alternative. In order to ensure a certain accuracy and thus to enable the usage for surveying applications, careful flight planning, implementation and evaluation are of special importance. This paper discusses the ongoing research on accuracy and applicability of UAV-based mine surveying as well as future research tendencies, whereby new, currently not achievable fields of application could be investigated.
43

Untertage-Aufnahme und anschließende Demokratisierung von terrestrischen Laserscandaten

Studnicka, Nikolaus, Groiss, Bernhard 16 July 2019 (has links)
Bereits seit Längerem wird das terrestrische Laser Scanning zur Vermessung von über- und unterirdischen Bauwerken eingesetzt. Die Forderung nach einer detaillierten digitalen 3D-Dokumentation erfordert geeignete Methoden, die eine möglichst hohe geometrische Auflösung bei entsprechend effizienten Aufnahmeverfahren ermöglichen. Gerade die Bedingungen unter Tage stellen große Herausforderungen an die Aufnahme: Obwohl viele Scanpositionen aufgenommen werden müssen, spielt der Zeitaufwand für die Abwicklung des gesamten Scanprojekts eine große Rolle. Obwohl keine GNSS (Global Navigation Satellite System)-Messungen möglich sind, sind die Anforderungen an die Robustheit des „Workflows“ und an die Genauigkeit des Gesamtprojekts hoch. Auf der einen Seite sollen große und komplexe 3D-Daten möglichst lückenfrei und komplett aufgenommen, auf der anderen Seite sollen die Ergebnisse dann aber auch möglichst vielen Anwendern flüssig und intuitiv bedienbar zur Verfügung stehen. In vielen Details wurde gerade in den letzten Jahren der gesamte Aufnahme- und Auswerteprozess beschleunigt und verbessert: Die Laserscanner messen mit „Millimeter-Genauigkeit“, es können dutzende hochauflösende Scans pro Stunde aufgenommen werden, die Scanpositionen werden auch ohne GNSS-Information automatisch zueinander registriert und eine Ausgleichsrechnung kann abschließend einen Fehlerreport des gesamten Vermessungsprojektes liefern. Diese Arbeit soll sowohl den gesamten „Vermessungs-Workflow“ beschreiben, als auch eine neue Methode aufzeigen, ein Scanprojekt mehreren Institutionen gleichzeitig zugänglich zu machen. Alle Scans eines Projektes können speicheroptimiert im Intranet oder im Internet als ein sogenanntes „RiPANO“-Projekt gespeichert werden. Die Navigation zwischen einzelnen Scanpositionen erfolgt intuitiv, rasch und übersichtlich. Mehrere Benutzer können dann gleichzeitig darauf zugreifen und die Daten so vorbereiten, dass daraus CAD-(Bestands-)Pläne erstellt werden können. / For some time now, terrestrial laser scanning has been used for surveying above and below ground structures. The demand for detailed digital 3D documentation requires suitable methods that allow the highest possible geometric resolution with correspondingly efficient recording methods. The underground conditions in particular pose great challenges for the recording: although many scan positions have to be recorded, the time required to complete an entire scan project plays an important role. Although no GNSS (global navigation satellite system) measurements are possible, the demands on the robustness of the registration and the accuracy of the overall project are high. On the one hand, large and complex 3D data should be recorded as gap-free and complete as possible, on the other hand, the results should be made available to as many users as possible in a fluent and easy to use way.
44

Punktwolken von Handscannern und ihr Potenzial

Martienßen, Thomas 16 July 2019 (has links)
Der Beitrag beschäftigt sich mit dem Handscanner ZEB-REVO der Firma GeoSLAM. Es werden die Handhabung der Hardware im untertägigen Einsatz und die Weiterverarbeitung der Punktwolken für Anwendungen im Bergbau näher betrachtet. Die Notwendigkeit der Referenzierung der Punktwolken und eine Möglichkeit diese umzusetzen, werden dargelegt. Über den Vergleich der Daten mit Punktwolken von terrestrischen Laserscannern der Firma Riegl in der Software RiScanPro werden Genauigkeitsuntersuchungen angestellt, die dem Anwender die Grenzen des Systems aufzeigen. Schließlich führen die angestellten Untersuchungen zu einer kritischen Bewertung des Systems. / This contribution addresses practical aspects, abilities and limitations in using the ZEBREVO hand-held scanner from GeoSLAM for underground mine mapping. Besides mapping activities, also post-processing of generated point clouds and requirements for georeferencing are discussed. An accuracy assessment is presented by the means of a point cloud comparison, generated by a terrestrial laser scanner from Riegl. Results demonstrate the technical ability and also the limitations of the system ZEB-REVO. Concluding, a critical evaluation of the system is presented.
45

3-D inversion of helicopter-borne electromagnetic data

Scheunert, Mathias 19 January 2016 (has links) (PDF)
In an effort to improve the accuracy of common 1-D analysis for frequency domain helicopter-borne electromagnetic data at reasonable computing costs, a 3-D inversion approach is developed. The strategy is based on the prior localization of an entire helicopter-borne electromagnetic survey to parts which are actually affected by expected local 3-D anomalies and a separate inversion of those sections of the surveys (cut-&-paste strategy). The discrete forward problem, adapted from the complete Helmholtz equation, is formulated in terms of the secondary electric field employing the finite difference method. The analytical primary field calculation incorporates an interpolation strategy that allows to effectively handle the enormous number of transmitters. For solving the inverse problem, a straightforward Gauss-Newton method and a Tikhonov-type regularization scheme are applied. In addition, different strategies for the restriction of the domain where the inverse problem is solved are used as an implicit regularization. The derived linear least squares problem is solved with Krylov-subspace methods, such as the LSQR algorithm, that are able to deal with the inherent ill-conditioning. As the helicopter-borne electromagnetic problem is characterized by a unique transmitter-receiver relation, an explicit representation of the Jacobian matrix is used. It is shown that this ansatz is the crucial component of the 3-D HEM inversion. Furthermore, a tensor-based formulation is introduced that provides a fast update of the linear system of the forward problem and an effective handling of the sensitivity related algebraic quantities. Based on a synthetic data set of a predefined model problem, different application examples are used to demonstrate the principal functionality of the presented algorithm. Finally, the algorithm is applied to a data set obtained from a real field survey in the Northern German Lowlands. / Die vorliegende Arbeit beschäftigt sich mit der 3-D Inversion von Hubschrauberelektromagnetikdaten im Frequenzbereich. Das vorgestellte Verfahren basiert auf einer vorhergehenden Eingrenzung des Messgebiets auf diejenigen Bereiche, in denen tatsächliche 3-D Strukturen im Untergrund vermutet werden. Die Resultate der 3-D Inversion dieser Teilbereiche können im Anschluss wieder in die Ergebnisse der Auswertung des komplementären Gesamtdatensatzes integriert werden, welche auf herkömmlichen 1-D Verfahren beruht (sog. Cut-&-Paste-Strategie). Die Diskretisierung des Vorwärtsproblems, abgeleitet von einer Sekundärfeldformulierung der vollständigen Helmholtzgleichung, erfolgt mithilfe der Methode der Finiten Differenzen. Zur analytischen Berechnung der zugehörigen Primärfelder wird ein Interpolationsansatz verwendet, welcher den Umgang mit der enorm hohen Anzahl an Quellen ermöglicht. Die Lösung des inversen Problems basiert auf dem Gauß-Newton-Verfahren und dem Tichonow-Regularisierungsansatz. Als Mittel der zusätzlichen impliziten Regularisierung dient eine räumliche Eingrenzung des Gebiets, auf welchem das inverse Problem gelöst wird. Zur iterativen Lösung des zugrundeliegenden Kleinste-Quadrate-Problems werden Krylov-Unterraum-Verfahren, wie der LSQR Algorithmus, verwendet. Aufgrund der charakteristischen Sender-Empfänger-Beziehung wird eine explizit berechnete Jakobimatrix genutzt. Ferner wird eine tensorbasierte Problemformulierung vorgestellt, welche die schnelle Assemblierung leitfähigkeitsabhängiger Systemmatrizen und die effektive Handhabung der zur Berechnung der Jakobimatrix notwendigen algebraischen Größen ermöglicht. Die Funktionalität des beschriebenen Ansatzes wird anhand eines synthetischen Datensatzes zu einem definierten Testproblem überprüft. Abschließend werden Inversionsergebnisse zu Felddaten gezeigt, welche im Norddeutschen Tiefland erhoben worden.
46

3-D inversion of helicopter-borne electromagnetic data

Scheunert, Mathias 27 November 2015 (has links)
In an effort to improve the accuracy of common 1-D analysis for frequency domain helicopter-borne electromagnetic data at reasonable computing costs, a 3-D inversion approach is developed. The strategy is based on the prior localization of an entire helicopter-borne electromagnetic survey to parts which are actually affected by expected local 3-D anomalies and a separate inversion of those sections of the surveys (cut-&-paste strategy). The discrete forward problem, adapted from the complete Helmholtz equation, is formulated in terms of the secondary electric field employing the finite difference method. The analytical primary field calculation incorporates an interpolation strategy that allows to effectively handle the enormous number of transmitters. For solving the inverse problem, a straightforward Gauss-Newton method and a Tikhonov-type regularization scheme are applied. In addition, different strategies for the restriction of the domain where the inverse problem is solved are used as an implicit regularization. The derived linear least squares problem is solved with Krylov-subspace methods, such as the LSQR algorithm, that are able to deal with the inherent ill-conditioning. As the helicopter-borne electromagnetic problem is characterized by a unique transmitter-receiver relation, an explicit representation of the Jacobian matrix is used. It is shown that this ansatz is the crucial component of the 3-D HEM inversion. Furthermore, a tensor-based formulation is introduced that provides a fast update of the linear system of the forward problem and an effective handling of the sensitivity related algebraic quantities. Based on a synthetic data set of a predefined model problem, different application examples are used to demonstrate the principal functionality of the presented algorithm. Finally, the algorithm is applied to a data set obtained from a real field survey in the Northern German Lowlands. / Die vorliegende Arbeit beschäftigt sich mit der 3-D Inversion von Hubschrauberelektromagnetikdaten im Frequenzbereich. Das vorgestellte Verfahren basiert auf einer vorhergehenden Eingrenzung des Messgebiets auf diejenigen Bereiche, in denen tatsächliche 3-D Strukturen im Untergrund vermutet werden. Die Resultate der 3-D Inversion dieser Teilbereiche können im Anschluss wieder in die Ergebnisse der Auswertung des komplementären Gesamtdatensatzes integriert werden, welche auf herkömmlichen 1-D Verfahren beruht (sog. Cut-&-Paste-Strategie). Die Diskretisierung des Vorwärtsproblems, abgeleitet von einer Sekundärfeldformulierung der vollständigen Helmholtzgleichung, erfolgt mithilfe der Methode der Finiten Differenzen. Zur analytischen Berechnung der zugehörigen Primärfelder wird ein Interpolationsansatz verwendet, welcher den Umgang mit der enorm hohen Anzahl an Quellen ermöglicht. Die Lösung des inversen Problems basiert auf dem Gauß-Newton-Verfahren und dem Tichonow-Regularisierungsansatz. Als Mittel der zusätzlichen impliziten Regularisierung dient eine räumliche Eingrenzung des Gebiets, auf welchem das inverse Problem gelöst wird. Zur iterativen Lösung des zugrundeliegenden Kleinste-Quadrate-Problems werden Krylov-Unterraum-Verfahren, wie der LSQR Algorithmus, verwendet. Aufgrund der charakteristischen Sender-Empfänger-Beziehung wird eine explizit berechnete Jakobimatrix genutzt. Ferner wird eine tensorbasierte Problemformulierung vorgestellt, welche die schnelle Assemblierung leitfähigkeitsabhängiger Systemmatrizen und die effektive Handhabung der zur Berechnung der Jakobimatrix notwendigen algebraischen Größen ermöglicht. Die Funktionalität des beschriebenen Ansatzes wird anhand eines synthetischen Datensatzes zu einem definierten Testproblem überprüft. Abschließend werden Inversionsergebnisse zu Felddaten gezeigt, welche im Norddeutschen Tiefland erhoben worden.

Page generated in 0.0693 seconds