• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Comparative Study on the Hydrolysis of Acetic Anhydride and N,N-Dimethylformamide: Kinetic Isotope Effect, Transition-State Structure, Polarity, and Solvent Effect

Cooper, William C., Chilukoorie, Abhinay, Polam, Suhesh, Scott, Dane, Wiseman, Floyd 01 December 2017 (has links)
Recent studies have shown that general-base assisted catalysis is a viable mechanistic pathway for hydrolysis of smaller anhydrides. Therefore, it is the central purpose of the present work to compare and contrast the number of hydrogen atoms in-flight and stationary in the transition state structure of the base-catalyzed mechanisms of 2 hydrolytic reactions as well as determine if any solvent effects occur on the mechanisms. The present research focuses on the hydrolytic mechanisms of N,N-dimethylformamide (DMF) and acetic anhydride in alkali media of varying deuterium oxide mole fractions. Acetic anhydride has been included in this study to enable comparisons with DMF hydrolysis. Comparative studies may give synergistic insight into the detailed structural features of the activated complexes for both systems. Hydrolysis reactions in varying deuterium oxide mole fractions were conducted in concentrations of 2.0M, 2.5M, and 3.0M for DMF and 0.10M for acetic anhydride at 25°C. Studies in varying deuterium mole fractions allow for proton inventory analysis, which sheds light on the number and types of hydrogen atoms involved in the activated complex. For these systems, this type of study can distinguish between direct nucleophilic attack of the hydroxide ion on the carbonyl center and general-base catalysis by the hydroxide ion to facilitate a water molecule attacking the carbonyl center. The numerical data are used to discuss 3 possible mechanisms in the hydrolysis of DMF.
12

Oxydation par voie humide catalytique d’effluents industriels : catalyseurs métaux nobles supportés / Catalytic wet air oxidation of industrial wastes : noble metal supported catalysts

Grosjean, Nicolas 18 February 2010 (has links)
L’industrie produit de grandes quantités d’effluents aqueux qu’il convient de traiter. Des traitements alternatifs aux procédés biologiques doivent être développés pour certains effluents toxiques et/ou non biodégradables. L’oxydation en voie humide catalytique repose sur l’action de l’oxygène sur les polluants en phase aqueuse à haute température et haute pression. Préalablement à cette étude, des catalyseurs au Ru ou Pt supportés sur ZrO2 ou TiO2très actifs et très stables pour l’OVHC de polluants modèles et de quelques effluents réels ont été développés. Ce travail a examiné ces catalyseurs sur d’autres effluents réels : un effluent provenant d’une unité de production de membranes contenant du glycérol et du DMF, uneffluent de sauce de couchage provenant de l’industrie papetière et un concentrât de lixiviatde décharge. Les catalyseurs se sont révélés très actifs et stables pour la minéralisation du glycérol, mais une forte lixiviation a été observée lors de l’OVHC du DMF du fait de la présence d’amines. L’oxydation de l’effluent de sauce de couchage permet de minéraliser la charge organique, facilitant le recyclage de la charge minérale, avec une amélioration accrue de la biodégradabilité du surnageant en présence des catalyseurs. Enfin, l’ajout de catalyseurs lors de l’OVH du concentrât de lixiviat de décharge permet d’améliorer sa minéralisation et d’éliminer totalement les ions ammonium / Industries produce huge volumes of effluents which need to be treated before disposal.Alternative treatments to the more classical biological techniques are required in the case oftoxic and/or non biodegradable effluents. The wet air oxidation (WAO) and catalytic wet airoxidation (CWAO) are based on the reaction of an oxidant (oxygen) with the pollutants in aqueous phase at high temperature and pressure. Ru or Pt catalysts supported on zirconium and titanium oxides were previously shown to be highly active and stable in the CWAO of awide range of model compounds and real complex effluents. These catalysts were evaluated in the CWAO of problematic effluents: one containing glycerol and DMF, one paper coatingslip effluent and one concentrated landfill leachate. The catalysts showed high activity and stability in the CWAO of glycerol, while the metal leached upon DMF CWAO due to the presence of amines. WAO leads to the partial mineralization of the organic load in paper coating slip, allowing an easy separation recycling of mineral pigments, with an improved biodegradability of the supernatant with the use of a catalyst. The use of a catalyst upon landfill leachate WAO leads higher COT conversion and complete ammonia elimination
13

Photofragment velocity-map imaging of organic molecules

Gardiner, Sara Heather January 2014 (has links)
Photofragment velocity-map imaging (VMI) has generally been employed to investigate the photodissociation dynamics of relatively small molecular systems (< 5 atoms). The work reported in this thesis focuses on the application of this technique for the investigation of the unimolecular photodissociation of larger chemical systems, which are of interest to a broad cross section of the chemical community. Typically, VMI studies involve state-selective detection of one particular fragmentation product, and so are often limited to the investigation of a single dissociation channel. By employing vacuum ultra-violet (VUV) photoionization, we are able to detect most, if not all of the fragments resulting from the dissociation of a neutral species, with ‘universal’ ionization being achieved in the ideal case when the fragment ionization energies are all lower than the VUV photon energy. This capability becomes particularly important when investigating larger systems, since these often display complex dynamics with multiple competing fragmentation pathways. Our approach allows us to investigate the different photofragmentation processes occurring for a particular system, to evaluate the relative importance of the active dissociation channels, and to gain insight into the energy partitioning amongst the fragments. A study of the UV photodissociation of two neutral alkyl iodide molecules demonstrates the first use in our laboratory of ‘universal’ ionization in combination with VMI. Studies into the photofragmentation processes resulting from 193 nm photoexcitation of neutral N,N-dimethylformamide, a small-molecule model for a peptide bond, and a number of neutral cyclic alkenes, which undergo the retro-Diels-Alder reaction, are also presented. The remaining studies presented in this thesis have investigated the photofragmentation processes of ionic species, generated by means of VUV photoionization. In the case of ion dissociation each fragmentation channel necessarily produces one charged species, which may be detected using the VMI technique. Therefore, such studies provide an insight into all of the active channels. An in-depth VMI study of the UV photodissociation of two ethyl halide cations is presented, which demonstrates the successful investigation of the multiple photofragmentation pathways of these ionic species. The remainder of the cation photodissociation studies are of relevance to a number of common processes known to occur in mass spectrometry, including the McLafferty rearrangement, the retro-Diels-Alder reaction, and ‘peptide’ bond fragmentation. By velocity-map imaging the products of these reactions, further information is obtained concerning these dissociation processes, which are no doubt of interest to the wider chemical community. This work forms part of the velocity-map imaging mass spectrometry (VMImMS) project. VMImMS involves imaging each of the fragmentation products that result from dissociation of a parent molecule of interest, with the aim of increasing the amount of information that can be obtained from a mass-spectrometry-type experiment. The work presented in this thesis demonstrates that VMImMS allows us to unravel details of the dissociation dynamics of both neutral and ionic species, and is potentially a powerful technique for investigating the fragmentation processes of increasingly complex systems.
14

Depozice velkých organických molekul v UHV / Deposition of large organic molecules under UHV

Krajňák, Tomáš January 2019 (has links)
In this thesis, large organic molecules (DM15N, DM18N, Cu(dbm)2) were deposited. These molecules are cannot be deposited by thermal sublimation due the fact that they decompose at lower temperature than they sublime. The employed molecules to single molecular magnets, which can be potentially used as quantum bites (qubit). The new method of deposition atomic layer injection made by Bihur Crystal company was introduced and tested. The method uses liquid solution with molecules which is driven by argon gas through pulse valve to the sample placed in ultra-high vacuum chamber. During the deposition, droplets of solution are formed on the sample surface. The solvent can be removed by light annealing or by keeping the sample in the vacuum for couple of days. The molecules were investigated by x-ray photoelectron spectroscopy and by scanning electron microscopy to determine fragmentation of the molecules, to study topography of the resultant surface and homogeneity of the deposited layer. We found conditions at which the intact molecules are deposited on the sample surfaces and form molecular nano- and micro- crystals.
15

Decoration of Graphene Oxide with Silver Nanoparticles and Controlling the Silver Nanoparticle Loading on Graphene Oxide

Watson, Venroy George 05 June 2014 (has links)
No description available.

Page generated in 0.066 seconds