• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • 5
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 42
  • 11
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Functional Characterization of Saccharomyces Cerevisiae SUB1 in Starvation Induced Sporulation Response

Gupta, Ritu January 2014 (has links) (PDF)
Among the various external signals perceived by yeast cells, nutrient availability is a condition to which these cells show a highly diverse biological response. Diploid cells in response to different nutritional stress conditions shows different developmental outcomes. On nitrogen starvation, cells undergo dimorphic transition whereby a unicellular yeast form transforms to a multicellular pseudohyphal form. While in the complete absence of a nitrogen source and a fermentable carbon source, yeast cells enter into a complex developmental program termed sporulation which culminates in haploid spores. The main objective of this work was to understand the role played by S. cerevisiaeSUB1 in starvation-induced meiotic program of diploid cells, decipher its target in sporulation specific gene expression cascade, study the domain architecture of Sub1 and examine its functional homology to mammalian PC4. Role of Sub1 in induction of sporulation and other stress responses in S. cerevisiae In a previous whole-genome screen for mutants with altered sporulation efficiency in the Saccharomyces cerevisiae S288c strain, SUB1 locus was identified as a negative regulator of sporulation (Deutschbaueret al., 2002). Moreover, genome-wide gene expression analysis in SK1 strain had shown that SUB1 transcript levels are repressed during sporulation (Chu et al., 1998). Many studies in different yeast strain backgrounds implicate more than 1,000 genesout of 6,200 genes in yeast genome as being differentially expressed during the sporulation process (Chu et al., 1998; Primiget al., 2000; Deutschbaueret al., 2002). Interestingly, these studies show the number of regulatory genes that negatively affect sporulation is far lower than those that are activators of sporulation and moreover their mechanism of action is poorly studied. S. cerevisiae.SUB1 is one among negative regulators of sporulation(Deutschbaueret al., 2002). Global transcriptome of diploid yeast cells undergoing sporulation showed SUB1 transcripts are greatly reduced with time progression (Chu et al., 1998). To understand the role of SUB1 in sporulation, we generated deletion of both SUB1 alleles in the diploid S288c strain background and compared the kinetics of asci formation in this strain with that of the wild-type. We observed that cells lacking SUB1 exhibit ~5-fold increase in tetrad asci. Based on Eosin Y and Calcoflour White staining assays, we find no change in spore morphology in the mutant. Thus the increase in sporulation efficiency in sub1/sub1diploids is not accompanied by formation of defective spores. We validated the reduction in SUB1 transcript levels during sporulation in wild-type SK1 strain background. We also examined the Sub1 protein levels by epitope-tagging of the chromosomal SUB1 open reading frame and determining protein levels in this strain. We find that consistent with the data on transcript levels, Sub1-TAP tagged protein levels too decreased gradually on shift to sporulation medium. We created sub1alleles in diploids in the SK1 strain background and using this strain background we investigated Sub1 target genes and chose IME2 (early), SMK1, SPS2 (middle), DIT1, DIT2 (mid-late) and SPS100 (late) genes as representative sporulation genes. We observed that sub1∆/sub1∆cells have a significantly elevated expression of middle genes (SPS2 and SMK1) that followed normal induction kinetics i.e., 5 hours post transfer to sporulation medium. However, the expression levels or timing for other class of sporulation genes did not change in sub1∆strain as compared with the wild-type. In order to confirm these observations, we also studied the effects of over-expression of SUB1 from the GAL1 promoter by transforming the high copy plasmid. This was done in wild-type SK1 cells and the expression of sporulation genes were analyzed. We observed that expression of SMK1 and SPS2middle sporulation genes was reduced on over-expression of SUB1.We used the Sub1-TAP protein to assess if Sub1 directly regulates these genes by Chromatin immunoprecipitation assays. For these studies, we examined the recruitment of Sub1 to these loci through the time course of sporulation. In wild-type SK1 cells, Sub1 was to bound to middle sporulation genes and this was striking in cells at 5th hour post-induction of sporulation. These data establish that Sub1 directly associates with chromatin at these loci co-incident with the time points where expression levels of these changes is altered in cells lacking Sub1. Furthermore, to assess the role of Sub1 in other stress responses, such as pseudohyphae formation in response to nitrogen starvation, pheromone-induced agar invasion and secretory stress, we employed a genetic approach. Genetic interaction studies of SUB1 with RPB4, a subunit of RNA polymerase with functions in stress response and HOS2, a subunit of Set3 complex and a close homolog of mammalian HDAC3, reported to be involved in sporulation and secretory stress, were performed. Based on sporulation frequency and pseudohyphal formation in the double mutants we conclude that SUB1 is downstream of both these genes. Moreover, our results from assays of schmoo formation and pheromone-induced agar invasion suggest that SUB1 functionally interacts with HOS2. Study of domain architecture of Sub1 and homology to human PC4 Comparison of the S. cerevisiae Sub1 protein with its higher eukaryotic homologs showed that the N-terminal region of yeast Sub1 (32-105 aa) is highly conserved (Knauset al., 1996; Henry et al., 1996) with the 106-292 C -terminal amino acids being yeast-specific. We employed deletion analysis to generate partial Sub1 proteins and used them to understand the roles played by these domains in different phenotypes associated with Sub1. Our analysis of the localization of various Sub1-GFP fusion proteins shows that 146-172 aa in the C-terminal domain of Sub1 confers nuclear localization. Sporulation frequency analysis of the different domains of Sub1 suggests that both the N and C terminal domains are necessary for sporulation function of Sub1. The N terminal domain of yeast Sub1 shares homology with human PC4 and not surprisingly possesses ssDNA binding ability first attributed to human PC4 (Kaiser et al., 1995). In order to investigate whether the effects of SUB1 on kinetics of sporulation require its ssDNA binding function, we generated the sub1(Y66A) ssDNA binding mutant (Sikorskiet al., 2011) and over-expressed it in the S288c genetic background. We assessed sporulation efficiency of sub1∆/sub1∆cells over-expressing sub1(Y66A) mutant allele as compared to cells over-expressing wild-type SUB1. Interestingly, cells with over-expression of sub1(Y66A) have reduced sporulation efficiency that is equivalent to the levels achieved on over-expression of wild type SUB1. This data suggests that the ssDNA-binding ability of Sub1 is not important for its role in sporulation. Furthermore, we examined the ability of human PC4 to contribute to yeast sporulation process by complementation analysis. We observed that over-expression of PC4 complemented the phenotypes of sub1∆strain, suggesting that the function of Sub1/PC4 family is evolutionarily conserved. Studies on biochemical interactions of Sub1 with histone proteins Human PC4 is a chromatin-associated protein, present on metaphase chromosomes (Das et al., 2006). The short C-terminal domain of PC4(62-87 aa) interacts with core histones H3 and H2B in vitro and in vivo and this interaction mediates chromatin condensation. The homology between S. cerevisiaeSub1 (32-105 aa) and human PC4 (62-127 aa)is in the domain required for their DNA binding properties and coactivator functions, suggesting possible conservation in their interactions. We tested the interactions of yeast Sub1 with histone proteins by adopting both in vitro and in vivo interaction assays. We find recombinant Sub1 had strong interactions with rat and yeast histone H3in vitro. Moreover,Sub1 was found to interact with histone H2B, but not with H2A, in vivo, a binding specificity also shown by human PC4.Thus, we demonstrate conservation in the interaction of Sub1 with histone proteins.
32

Reprodukční izolace diploidů a tetraploidů druhu Vicia cracca a možnosti evoluce tohoto agregátu / Reproductive isolation between diploid and tetraploid cytotype of Vicia cracca and possibilities of evolution of this aggregate

Vlčková, Zuzana January 2015 (has links)
Master thesis investigates reproductive barriers in diploid-polyploid complex of Vicia cracca. Complex with basic chromosome number x=7 consists of diploid (2x=14), tetraploid (4x=28) and rare triploid (3x=21) cytotype. I studied prereproductive barriers between diploid and tetraploid cytotype: phenology of flowering, pollinators' behavior (preference of spieces of pollinators to cytotypes, sequence of visited cytotypes), variables, that could explain pollinators' behavior (amount of nectar as the main reward, size and amount of pollen grains as a potentional reward). To find out how strong the triploid block is I analyzed ploidy of seeds and seedlings from mixed-ploidy population. The habitat isolation showed up to be the strongest reproductive barrier. Pollinator's behavior meaningfully contributes to isolation, phenology of flowering contributes only minimally. Index expressing rate of prereproductive barriers is 0,956. Pollinator Bombus pascuorum visited on one locality preferably tetraploid plants and Andrena sp. preferred diploid plants. Even though tetraploid plants produce more nectar, no other analysis showed pollinators' preference to tetraploid plants. I prepared one squash of diploid V. cracca using method of in situ hybridization. This method needs to be optimilized for the studied taxon.
33

Species delienation and hybridization in the brown seaweed Ectocarpus complex / Délimitation d'espèces et hybridation chez l'algue brune Ectocarpus

Montecinos, Alejandro 08 November 2016 (has links)
Le genre Ectocarpus Lyngbye (Ectocarpales, Phaeophyceae) regroupe des algues marines filamenteuses caractérisées par un cycle haploïde-diploïde. L'objectif de la thèse était de délimiter les espèces et d'étudier la spéciation dans ce genre. Nous avons commencé par clarifier le nombre d'espèces cryptiques en utilisant deux loci indépendants et une approche intégrative associant une analyse de détection de " barcode gap " avec des reconstructions phylogénétiques. Nos résultats montrent l'existence d'au moins 15 espèces qui se répartissent en un groupe monophylétique composé d'E. crouaniorum (Ecro) et de deux espèces proches ainsi que d'un mélange paraphylétique composé des 12 autres espèces incluant E. siliculosus (Esil). Deuxièmement, les analyses de séquençage Rad et de phylogénomique ont permis de résoudre les relations au sein du groupe paraphylétique. Les espèces se regroupent maintenant en deux clades divergents (Ecro and Esil). Des niveaux de divergence variables entre espèces sont révélés au sein du clade Esil. Des phénomènes d'hybridation entre les espèces les plus apparentées, et trouvées en sympatrie, sont suspectés. Finalement, l'importance de l'isolement reproducteur a été étudié entre les espèces Esil et Ecro, les plus communes, mais les plus divergentes, en utilisant des marqueurs spécifiques de chacune des espèces. Nos résultats indiquent que la méiose agit comme une forte barrière reproductive entre ces espèces et démontrent que les espèces du genre Ectocarpus sont d'excellents systèmes pour étudier les conséquences évolutives de l'hybridation et de l'introgression pour le maintien ou la divergence des espèces grâce à leur cycle haploïde-diploïde. / The genus Ectocarpus Lyngbye (Ectocarpales, Phaeophyceae) comprises marine filamentous algae characterized by an alternation between two independent multicellular organisms of different ploidy. The general objective of the thesis was to study species delineation and speciation within this genus. We started clarifying the number of cryptic species using two unlinked loci (COI-5P and ITS1) and an integrative approach associating barcode gap detection analyses with phylogenetic reconstructions. We showed the presence of at least 15 species partitioned within a monophyletic group composed of E. crouaniorum (Ecro) and two closely related species and a paraphyletic assemblage composed of the remaining 12 other species including E. siliculosus (Esil). Second, Rad sequencing and phylogenomics analyses allowed to resolve the relationships within the paraphyletic assemblage. The different species becomes well separated into two divergent clades (Ecro and Esil). A diversity of taxa with various levels of divergence was revealed within the clade Esil and hybridization between the closest and sympatric species was suggested. Finally, the importance of reproductive isolation among the two commonest but most divergent species Esil and Ecro was studied using species-specific nuclear and cytoplasmic markers jointly with 9 microsatellites. We showed that meiosis acts as a strong reproductive barrier among these two species and demonstrates that the species of the genus Ectocarpus are excellent systems to study evolutionary consequences of hybridization and introgression for the maintenance or breakdown of species because of their haploid diploid life cycle.
34

Evolution des cycles de vie : modélisation et évolution expérimentale sur la levure Saccharomyces cerevisiae / Evolution of life cycles : modelling and experimental evolution using the yeast Saccharomyces cerevisiae

Rescan, Marie 27 September 2016 (has links)
La reproduction sexuée conduit à l'alternance d'une phase haploïde et d'une phase diploïde, dont la durée relative est très variable entre taxons. La proportion du cycle de vie passée en phase haploïde et en phase diploïde a d'importantes conséquences sur de nombreux processus adaptatifs. Cette thèse combine des approches théoriques qui explorent l'effet de facteurs génétiques et écologiques sur l'évolution des cycles de vie, et un travail expérimental sur l'effet de la ploidy sur l'évolution de l'isolement reproducteur entre populations. La partie théorique a consisté à intégrer des composantes écologiques dans des modèles génétiques pour l'évolution des cycles de vie. En particulier, j'ai exploré l'interaction entre la différenciation de niche entre haploïdes et diploïdes (qui favorise le maintien de cycles biphasiques, impliquant le développement des deux phases) et l'effet d'allèles délétères (qui favorisent soit l'haploïdie, soit la diploïdie). Tandis que la différentiation de niche (ou plus simplement, une différence de valeur sélective intrinsèque entre phases) stabilise les cycles intermédiaires, la présence d'allèles délétères conduit souvent à un branchement évolutif, avec la coexistence stable d'allèles codant pour l'haploïdie et la diploïdie. Cependant, des fluctuations temporelles de l'habitat permettent d'empêcher ce branchement et de stabiliser les cycles biphasiques. La partie expérimentale a consisté à comparer la dynamique de l'isolement reproducteur entre petites populations de levure haploïdes et de diploïdes avec de taux de mutations élevés. Les résultats montrent que tandis que les hybrides haploïdes ont une valeur sélective plus faible que leurs parents, les hybrides diploïdes bénéficient du phénomène d'hétérosis en génération F1, et ont encore une valeur sélective plus élevée que leurs parents en génération F2. La variance de la valeur sélective des hybrides était cependant beaucoup plus élevée chez les haploïdes, avec la production de certains génotypes très performants. / Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. The proportion of the life cycle spent in the haploid and diploid phase has important consequences on a number of adaptive processes. This thesis combines theoretical approaches exploring the effect of genetic and ecological factors on the evolution of life cycles, and experimental work on the effects of ploidy on the evolution of reproductive isolation between populations. The theoretical part consisted in integrating ecological components into genetic models for the evolution of life cycles. In particular, I explored the interplay between niche differentiation between haploids and diploids (known to favour the maintenance of biphasic life cycles, involving development in both phases) and the effect of deleterious alleles (known to favour either haploid or diploid life cycles). While niche differentiation (or more simply intrinsic fitness differences between phases) stabilizes biphasic cycles, the presence of deleterious alleles often lead to evolutionary branching and to the stable coexistence of alleles coding for haploid and diploid cycles. Branching is prevented, however, when temporal environmental fluctuations are included into the model. The experimental part consisted in comparing the dynamics of reproductive isolation between small populations of haploid and diploid yeasts with elevated mutation rate. The results show that while haploid hybrids tend to have a lower fitness than their parents, diploid hybrids benefit from heterosis in the F1 generation, and still have a higher fitness than the diploid homozygous parents in the F2 generation. However, the variance of hybrid fitness was much higher in haploids, with the production of some highly fit genotypes.
35

Cold response biomarker identification in strawberry

Deitch, Zachary M. 17 July 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Strawberry (Fragaria spp.) is an agricultural crop grown often in temperate regions that has high variability in its susceptibility to freezing injury. To breed cultivars for frost and freezing tolerance, identification of molecular markers associated with low temperature tolerance is advantageous. In this work, I investigated a high-throughput method for protein assays and western blotting. Success in streamlining these processes saves an immense amount of time and allows for the processing of more samples and obtaining larger datasets. Thirty-three octoploid varieties were tested for their accumulation of five different potential biomarkers in response to cold exposure. It was found that total dehydrin content, has the strongest potential to be reliable biomarkers for breeding programs. Previous work identified seven putative dehydrins in Fragaria, where two were purified and positively identified by mass spectrometry and determined to be COR47-like (SKn) and XERO2-like (YnSKn). This work demonstrated that cold tolerance positively correlated with dehydrin protein expression levels. To understand the cold-regulated expression of dehydrins as a function of cold exposure time, the levels of transcripts and corresponding proteins were examined in strongly cold tolerant (Alta) and lesser cold tolerant (FDP817, NCGR1363) Fragaria diploid genotypes. The COR47-like (SKn) and XERO2-like (YnSKn) dehydrins both had higher transcript accumulation and protein levels in the more cold tolerant line in comparison to the two less cold tolerant lines. Lack of correlation between transcript and resulting COR47 protein level in Alta were observed at several different timepoints, where protein accumulation preceded an increase in RNA. This trend was not seen with XERO2. This initiated an investigation to discover at what level COR47 is being regulated. First, the COR47 coding region was sequenced for all the genotypes to confirm against the predicted sequence. In addition, since two isoforms of the COR47 gene exist, and could possibly explain the discrepancy in transcript counts, primers were designed for both isoforms and RT-qPCR was performed to examine the transcripts of COR47 more closely. Through examination of the non-congruence of COR47 transcripts and protein, it was found that transcriptional mechanisms of regulation are not involved, and that post transcriptional and post-RNA splicing mechanisms are likely to be responsible for the observed trend in Alta. Conclusions from this work demonstrate that dehydrin transcripts and dehydrin protein accumulations are strong potential biomarkers for identifying low temperature tolerance in diploid strawberry.
36

GERMPLASM COLLECTION, CHARACTERIZATION, AND ENHANCEMENT OF EASTERN <i>PHLOX</i> SPECIES

Zale, Peter J. January 2014 (has links)
No description available.
37

Diferenciace v polyploidním komplexu Libanotis pyrenaica (Apiaceae) / Differentiation in the polyploid complex Libanotis pyrenaica (Apiaceae)

Přívozníková, Hana January 2016 (has links)
Polyploidization belong to principal evolutionary mechanisms in plants. Although it is rather rare in the family Apiaceae, there are several interesting polyploid complexes here. The present study deals with Libanotis pyrenaica, species three previously reported ploidy levels, namely diploid (2n = 2x = 22), tetraploid (2n = 4 x = 44) and most likely very rare triploid (2n = 3x = 33). The present study aims at geographical pattern of ploidal diversity in central Europe, genetic variation and selected biological features of this species. Flow cytometru, analysis of two chloroplast DNA markers (trnF-trnL and cp018-cp020), morphometrics and in vitro germination experiments were used. The tetraploid cytotype occurs throughout the studied area; in the Czech Republic it was found in the České středohoří Mts., southern Bohemia and Moravia, in Slovakia it especially in the Carpathian mountains in western and central parts of the country and in the Pieniny Mts. in the northeast. Tetraploid cytotype occurs mainly in central-east Europe; in the Czech Republic it is common in the lowlands along the river of Labe and locally in Moravia; in Slovakia it was found along the river of Váh, in the Slovenské rudohorie Mts. and in the Belanské Tatry Mts. A mixed-ploidy population (2x, 4x) was discovered in southern...
38

Des mécanismes aux conséquences adaptatives du choix du partenaire sexuel pour la compatibilité génétique : exemple d'un hyménoptère parasitoïde soumis à la dépression de consanguinité / From mechanisms to adaptive consequences of mate choice for genetic compatibility : example of a hymenopteran parasitoid subject to inbreeding depression

Chuine, Anna 21 May 2014 (has links)
L’haplodiploïdie chez les hyménoptères leur confère une meilleure résistance aux effets délétères de la dépression de consanguinité. Cependant, certains hyménoptères ont un déterminisme du sexe particulier qui les rend sensibles à cette dépression. Chez ces espèces, le genre des individus dépend de la complémentarité des allèles à un locus donné, le single-locus Complementary Sex Determination (sl-CSD). Les oeufs non fécondés se développent en mâles haploïdes alors hémizygotes au locus de CSD. En revanche les oeufs fécondés donnent des femelles diploïdes s’ils sont hétérozygotes au locus du CSD mais deviennent des mâles diploïdes s’ils sont homozygotes pour ce même locus. Ces derniers sont d’autant plus fréquents dans les populations consanguines où le taux d’homozygotes est élevé. Or, les mâles diploïdes sont dans la majorité des cas non viables ou stériles. La production de tels mâles est de ce fait coûteuse pour les femelles. La faible viabilité des mâles diploïdes s’apparente alors à de la dépression de consanguinité. Par des approches liées à l’écologie comportementale et à l’écologie chimique le projet de thèse se concentre sur l’étude des coûts individuels générés par la production de mâles diploïdes et à l’évolution des comportements sélectionnés en réponse à ces coûts. Dans un premier temps, je me suis intéressée à la fitness des mâles diploïdes et aux répercussions de leur production sur les femelles de la population. Dans un second temps, j’ai étudié les comportements permettant de réduire les coûts de la production des mâles diploïdes. Les individus apparentés représentent les partenaires sexuels où le risque de produire des fils diploïdes est le plus élevé. De ce fait, les comportements d’évitement de la consanguinité devraient être sélectionnés dans ces populations / Haplodiploidy in hymenopterans offers a great resistance to the deleterious effect of inbreeding depression. However, some hymenopterans have a specific sex determination which drives them to this depression. Among those species, the sex of individuals depends on allele complementary at a particular locus; the single-locus Complementary Sex Determinatation (sl-CSD). Unfertilized eggs give birth to haploid males which are hemizygotes at the CSD locus. Conversely, fertilized eggs develop into females when heterozygote at the CSD locus but become diploid males when homozygote at the same locus. Diploid males are especially frequent in inbred populations with a high inbreeding rate. Yet diploid males are generally unviable or sterile. Production of such males is therefore costly for females. Reduced viability of diploid males is then similar to inbreeding depression. Linked with behavioural ecology and chemical ecology approaches, the PhD project starts by focusing on individual costs due to production of diploid males, and then on behaviours that have evolved in response to these costs. As a first step, the fitness of diploid males and its impact on females of the population have been measured. If they are unviable, their production is akin to female mortality. As a second step, we studied behaviours that reduce the cost of diploid male production. Related individuals are sexual partners that are most likely to father diploid sons. Therefore, behavioural inbreeding avoidance may be selected in such populations
39

Karyotypová evoluce afrických linií sklípkanů čeledi Theraphosidae / Karyotype evolution of African clades of theraphosid mygalomorphs

Košátko, Prokop January 2019 (has links)
Karyotypes of mygalomorph spiders are not satisfactorily known. This thesis is focused on the basic cytogenetic analysis of selected species of African clades of theraphosid mygalomorphs. It includes four subfamilies: Eumenophorinae, Harpactirinae, Ischnocolinae and Stromatopelminae. Diploid numbers, chromosome morphology, sex chromosome systems and chromosome behaviour in male germline in the selected species of African theraphosid subfamilies were studied. The findings support published results, that refer of high karyotype diversity in Theraphosidae. Diploid chromosome number reduction is probably a basic trend of theraphosid karyotype evolution. The majority of analysed species exhibited one, two or three sex chromosomes. In some species neo-sex chromosome systems were found. In some species one or two sex chromosome pairs (SCP), composed of chromosomes which lack morphological differentiation were detected. Nucleolus organizer regions were detected by fluorescent in situ hybridization in several species. Constitutive heterochromatin detection was performed by C-banding in two species. Keywords: constitutive heterochromatin, diploid number, karyotype, fluorescence in situ hybridization, Mygalomorphae, nucleolus organizer region, SCP, sex chromosome, spider, Theraphosidae
40

Effects of alternative grass species on grazing preference of sheep for white clover

Muraki, Tomohiro January 2008 (has links)
Despite the importance of a high white clover (Trifolium repens) content in temperate pastoral systems in terms of livestock performance and nitrogen fixation, the proportion of white clover in grass-clover pastures is often low (<20%). This thesis examined in two experiments whether the white clover content of pastures could be improved by sowing white clover with alternative grass species to diploid perennial ryegrass (Lolium perenne L.). In a pasture experiment, DM production, pasture composition and morphology of grass-clover mixtures was measured over the establishment year (January 2007 to January 2008) where white clover was sown in fine mixtures with diploid perennial ryegrass, tetraploid perennial ryegrass, timothy (Phleum pratense L.) and cocksfoot (Dactylis glomerata L.). Pastures were irrigated and rotationally grazed with on-off grazing with Coopworth ewe hoggets. Total annual DM production of pasture was more than 20% higher in tetraploid (12521 kg DM ha⁻¹) and diploid (11733 kg DM ha⁻¹) perennial ryegrass than timothy (9751 kg DM ha⁻¹) and cocksfoot (9654 kg DM ha⁻¹). However, timothy (5936 kg DM ha⁻¹) and cocksfoot (5311 kg DM ha⁻¹) had more than four times higher white clover annual DM production than tetraploid (1310 kg DM ha⁻¹) and diploid (818 kg DM ha⁻¹) ryegrass. Pasture growth rate at the first three harvests in autumn was significantly greater in tetraploid and diploid ryegrass than timothy and cocksfoot. Timothy and cocksfoot had a higher proportion of white clover than tetraploid and diploid perennial ryegrass throughout the entire year. This was due to more and larger white clover plants in timothy and cocksfoot plots. In a grazing preference experiment, the partial preference of sheep for white clover offered in combination with the same grass species as in the pasture experiment was measured in five grazing tests in May, September, October, November and December 2007. Pastures were sown in January 2007. Paired plots (grass and clover both 4.2 m x 10 m) were grazed by three Coopworth ewe hoggets between 9am and 5pm, and preference was recorded by decline in pasture mass and visual scan sampling for grazing time. Grazing preference for clover was generally low throughout these tests (e.g. average apparent DM intake from clover = 47%; average grazing time from clover = 44%). Several explanations are proposed for this low preference including a high N content and intake rate of the grass relative to the clover. No significant differences were found among the grass treatments in total grass grazing time, total clover grazing time, ruminating time, the proportion of grazing time on clover, selective coefficient for clover and DM intake percentage from clover at any date. There was no significant change in overall sward surface height (SSH) decline among grass treatments throughout all the tests except December 2007 when the overall SSH decline for cocksfoot was significantly lower than the other species. The study indicated that the rapid growth rate of perennial ryegrass in the early phase of pasture establishment, rather than differences in partial preference, was the key factor limiting white clover content in the mixed swards relative to cocksfoot and timothy pastures. It is concluded that high clover-containing pastures capable of delivering high per head performance can be established through the use of slow establishing pasture species such as timothy and cocksfoot.

Page generated in 0.0267 seconds