21 |
MECHANICAL CHARACTERIZATION OF Ti-6AL-4V REPAIRED BY DIRECTED ENERGY DEPOSITION IN COMPARISON WITH THE CONVENTIONAL Ti-6AL-4VShrestha, Sulochana 29 April 2021 (has links)
No description available.
|
22 |
Process parameter optimisation for Waspaloy using Laser-Directed Energy Deposition with PowderLövhall, Johannes January 2024 (has links)
Material utilisation is of importance in the manufacturing industry formaking the most of each material, minimising waste and increasing cost-effectiveness. In this thesis, samples of Waspaloy built with the method of L-DED-P has been analysed in order to investigate how process pa-rameters influence the build quality and geometrical accuracy in as-builtobjects. The samples analysed was built in single rows of one, three,five and fifteen layers. A build process was used in which the sampleswere built with individual combinations of the process parameters laserpower, scanning speed, and powder flow. Each combination of processparameters was used to build one track for each layer height.Analysis included defect analysis with light optical microscopy, andpost-processing with ImageJ for automatic identification, quantification,and collection of measurements. A qualitative analysis was performed andthe sample properties and characteristics was described in terms of theamount of defects, including a descriptive assessment of defect severity.Etched samples revealed a columnar grain structure in samples, which was apparent in builds with at least three layers.The results presented show a difference in build height, quantity andsize of pores, and the presence or absence of other defects such as lack of fusion. Sample 3 which was built with high laser power, slow scan-ning speed, and high powder feed show promising results with one ofthe highest build rates of all samples, combined with a low normalisedpore distribution. The sample experiences partial hardening, with hard-ness values reaching 320 HV, but still promisingly show no sign of crackformation.It is concluded that powder feed relates primarily to the build rateof the samples, and the scanning speed together with the laser power influence the quality of the build, where high laser power and low scanningspeed tends to form well behaving samples with few defects, whilst other combinations increase the risk of defects.
|
23 |
Multiple beam directors for naval free electron laser weaponsMitchell, Ethan D. 03 1900 (has links)
Approved for public release, distribution is unlimited / The Free Electron Laser has the potential to become a revolutionary weapon system. Deep magazines, low cost-per-shot, pinpoint accuracy, and speed of light delivery give this developing weapon system significant advantages over conventional systems. One limiting factor in high energy laser implementation is thermal blooming, a lensing effect which is caused by the quick heating of the atmosphere, so that the laser beam does not focus on the desired spot, thereby degrading the effectiveness of the laser on target. The use of multiple beam directors focusing on a target from a single platform may mitigate thermal blooming by allowing half of the laser's energy to travel through a given volume of air, so that they only overlap very near the target. Less energy traveling through a given volume of space means less heating, and therefore lessens the effects of thermal blooming. Also, simulations of FEL's were conducted modifying parameters such as the number of undulator periods, electron beam focus, the normalized Rayleigh length, and mirror output coupling, in order to determine optimum design parameters. New parameters for the next proposed FEL were simulated to examine the effect of mirror tilt on laser power and extraction as well. / Lieutenant, United States Navy
|
24 |
Armas estratégicas : o impacto da digitalização sobre a guerra e a distribuição de poder no sistema internacional / Strategic weapon : impact of war on scanning and distribution of power in the international systemÁvila, Fabrício Schiavo January 2008 (has links)
O pós-Guerra Fria (1991-2006) apresenta uma mudança significativa no cenário estratégico: a maior acessibilidade da tecnologia militar e o surgimento de novas armas capazes de modificar o poder coercitivo dos países – como as Armas de Energia Direta – acabam pondo em cheque a idéia de que a primazia nuclear é condição suficiente para garantir a unipolaridade. Focando-se no atual recrudescimento das tensões entre EUA com a Rússia – especialmente com a proposta estadunidense de implementação do Escudo Antimíssil no Leste Europeu – e com a China, e analisando as relações de poder entre os três países, procuramos revelar que tipo de competição ocorrerá no Sistema Internacional nas próximas décadas. A presente dissertação analisa as reais possibilidades de que a primazia nuclear estadunidense se torne efetiva, uma vez que para tanto é necessário o desarmamento estratégico das demais potências. Como uma guerra nuclear entre os três países possui um custo político muito elevado as disputas tendem a ser decididas na esfera das operações. Para ilustrar essa última afirmação usamos um cenário contrafactual de guerra nuclear limitada entre Estados Unidos, Rússia e China, por meio do qual tentamos evidenciar as pré-condições táticas e operacionais para uma eventual vitória da coalizão sino-russa. / The evolution of the Post-Cold War (1991-2006) international system shows a significant amount of change regarding the strategic capabilities of United States, Russia, and China. The rise of a new class of strategic weapons called Directed Energy Weapons (lasers and high power microwaves), as well as the great costs associated with the quest for nuclear primacy, demand closer examination of the current assumption about the links between nuclear primacy and unipolar distribution of power in the International System. Starting with the current tensions between US and Russia, we try to reveal in this article what kind of competition might be observed in the International System over the next decade. The present work analyzes the real possibilities of the USA achieving an effective nuclear primacy condition, which requires the complete disarmament of all other powers. Since a nuclear war between the three countries has a very high political cost, disputes tend to be settled on the operational sphere. In order to demonstrate this final point, we made comparative use of two nuclear war scenarios. This works concludes by establishing the tactical and operational conditions that Russia and China seems to counting with in order to defeat United States if a shooting war comes.
|
25 |
Microstructure Modelling of Additive Manufacturing of Alloy 718Kumara, Chamara January 2018 (has links)
In recent years, additive manufacturing (AM) of Alloy 718 has received increasing interest in the field of manufacturing engineering owing to its attractive features compared to those of conventional manufacturing methods. The ability to produce complicated geometries, low cost of retooling, and control of the microstructure are some of the advantages of the AM process over traditional manufacturing methods. Nevertheless, during the building process, the build material undergoes complex thermal conditions owing to the inherent nature of the process. This results in phase transformation from liquid to solid and solid state. Thus, it creates microstructural gradients in the built objects, and as a result,heterogeneous material properties. The manufacturing process, including the following heat treatment that is used to minimise the heterogeneity, will cause the additively manufactured material to behave differently when compared to components produced by conventional manufacturing methods. Therefore, understanding the microstructure formation during the building and subsequent post-heat treatment is important, which is the objective of this work. Alloy 718 is a nickel-iron based super alloy that is widely used in the aerospace industry and in the gas turbine power plants for making components subjected tohigh temperatures. Good weldability, good mechanical properties at high temperatures, and high corrosion resistance make this alloy particularly suitablefor these applications. Nevertheless, the manufacturing of Alloy 718 components through traditional manufacturing methods is time-consuming and expensive. For example, machining of Alloy 718 to obtain the desired shape is difficult and resource-consuming, owing to significant material waste. Therefore, the application of novel non-conventional processing methods, such as AM, seems to be a promising technique for manufacturing near-net-shape complex components.In this work, microstructure modelling was carried out by using multiphase-field modelling to model the microstructure evolution in electron beam melting (EBM) and laser metal powder directed energy deposition (LMPDED) of Alloy 718 and x subsequent heat treatments. The thermal conditions that are generated during the building process were used as input to the models to predict the as-built microstructure. This as-built microstructure was then used as an input for the heat treatment simulations to predict the microstructural evolution during heat treatments. The results showed smaller dendrite arm spacing (one order of magnitude smaller than the casting material) in these additive manufactured microstructures, which creates a shorter diffusion length for the elements compared to the cast material. In EBM Alloy 718, this caused the material to have a faster homogenisation during in-situ heat treatment that resulting from the elevated powder bed temperature (> 1000 °C). In addition, the compositional segregation that occurs during solidification was shown to alter the local thermodynamic and kinetic properties of the alloy. This was observed in the predicted TTT and CCT diagrams using the JMat Pro software based on the predicted local segregated compositions from the multiphase-field models. In the LMPDED Alloy 718 samples, this resulted in the formation of δ phase in the interdendritic region during the solution heat treatment. Moreover, this resulted in different-size precipitation of γ'/γ'' in the inter-dendritic region and in the dendrite core. Themicro structure modelling predictions agreed well with the experimental observations. The proposed methodology used in this thesis work can be an appropriate tool to understand how the thermal conditions in AM affect themicro structure formation during the building process and how these as-built microstructures behave under different heat treatments.
|
26 |
Armas estratégicas : o impacto da digitalização sobre a guerra e a distribuição de poder no sistema internacional / Strategic weapon : impact of war on scanning and distribution of power in the international systemÁvila, Fabrício Schiavo January 2008 (has links)
O pós-Guerra Fria (1991-2006) apresenta uma mudança significativa no cenário estratégico: a maior acessibilidade da tecnologia militar e o surgimento de novas armas capazes de modificar o poder coercitivo dos países – como as Armas de Energia Direta – acabam pondo em cheque a idéia de que a primazia nuclear é condição suficiente para garantir a unipolaridade. Focando-se no atual recrudescimento das tensões entre EUA com a Rússia – especialmente com a proposta estadunidense de implementação do Escudo Antimíssil no Leste Europeu – e com a China, e analisando as relações de poder entre os três países, procuramos revelar que tipo de competição ocorrerá no Sistema Internacional nas próximas décadas. A presente dissertação analisa as reais possibilidades de que a primazia nuclear estadunidense se torne efetiva, uma vez que para tanto é necessário o desarmamento estratégico das demais potências. Como uma guerra nuclear entre os três países possui um custo político muito elevado as disputas tendem a ser decididas na esfera das operações. Para ilustrar essa última afirmação usamos um cenário contrafactual de guerra nuclear limitada entre Estados Unidos, Rússia e China, por meio do qual tentamos evidenciar as pré-condições táticas e operacionais para uma eventual vitória da coalizão sino-russa. / The evolution of the Post-Cold War (1991-2006) international system shows a significant amount of change regarding the strategic capabilities of United States, Russia, and China. The rise of a new class of strategic weapons called Directed Energy Weapons (lasers and high power microwaves), as well as the great costs associated with the quest for nuclear primacy, demand closer examination of the current assumption about the links between nuclear primacy and unipolar distribution of power in the International System. Starting with the current tensions between US and Russia, we try to reveal in this article what kind of competition might be observed in the International System over the next decade. The present work analyzes the real possibilities of the USA achieving an effective nuclear primacy condition, which requires the complete disarmament of all other powers. Since a nuclear war between the three countries has a very high political cost, disputes tend to be settled on the operational sphere. In order to demonstrate this final point, we made comparative use of two nuclear war scenarios. This works concludes by establishing the tactical and operational conditions that Russia and China seems to counting with in order to defeat United States if a shooting war comes.
|
27 |
Armas estratégicas : o impacto da digitalização sobre a guerra e a distribuição de poder no sistema internacional / Strategic weapon : impact of war on scanning and distribution of power in the international systemÁvila, Fabrício Schiavo January 2008 (has links)
O pós-Guerra Fria (1991-2006) apresenta uma mudança significativa no cenário estratégico: a maior acessibilidade da tecnologia militar e o surgimento de novas armas capazes de modificar o poder coercitivo dos países – como as Armas de Energia Direta – acabam pondo em cheque a idéia de que a primazia nuclear é condição suficiente para garantir a unipolaridade. Focando-se no atual recrudescimento das tensões entre EUA com a Rússia – especialmente com a proposta estadunidense de implementação do Escudo Antimíssil no Leste Europeu – e com a China, e analisando as relações de poder entre os três países, procuramos revelar que tipo de competição ocorrerá no Sistema Internacional nas próximas décadas. A presente dissertação analisa as reais possibilidades de que a primazia nuclear estadunidense se torne efetiva, uma vez que para tanto é necessário o desarmamento estratégico das demais potências. Como uma guerra nuclear entre os três países possui um custo político muito elevado as disputas tendem a ser decididas na esfera das operações. Para ilustrar essa última afirmação usamos um cenário contrafactual de guerra nuclear limitada entre Estados Unidos, Rússia e China, por meio do qual tentamos evidenciar as pré-condições táticas e operacionais para uma eventual vitória da coalizão sino-russa. / The evolution of the Post-Cold War (1991-2006) international system shows a significant amount of change regarding the strategic capabilities of United States, Russia, and China. The rise of a new class of strategic weapons called Directed Energy Weapons (lasers and high power microwaves), as well as the great costs associated with the quest for nuclear primacy, demand closer examination of the current assumption about the links between nuclear primacy and unipolar distribution of power in the International System. Starting with the current tensions between US and Russia, we try to reveal in this article what kind of competition might be observed in the International System over the next decade. The present work analyzes the real possibilities of the USA achieving an effective nuclear primacy condition, which requires the complete disarmament of all other powers. Since a nuclear war between the three countries has a very high political cost, disputes tend to be settled on the operational sphere. In order to demonstrate this final point, we made comparative use of two nuclear war scenarios. This works concludes by establishing the tactical and operational conditions that Russia and China seems to counting with in order to defeat United States if a shooting war comes.
|
28 |
Study of the Corrosion Resistance of 316L Stainless Steel Made by Directed Energy Deposition for Applications at an Elevated TemperatureCanales Cantu, Alberto Alejandro 12 1900 (has links)
The corrosion resistance under elevated temperature of additively manufactured 316L stainless steel made by directed energy deposition was studied. Test samples were prepared in a hybrid additive manufacturing machine using standard deposition parameters recommended by the manufacturer. Control samples were cut from wrought material to compare the results. The test was performed under a corrosive atmosphere with a solution of water with 3.5 % in weight of salt (NaCl). The total duration of the test was 635 hours, divided in five stages of 12, 24, 48, 226, and 325 hours to analyze the samples between each stage. The samples were analyzed quantitatively measuring weight loss and surface topography, and qualitatively by macroscopic inspection with digital photography, and microscopic inspection with optical and scanning electron microscopy. The results show a higher corrosion rate for the additively manufactured samples compared to the control samples. An evident increase in the size of pits initially present on the samples was observed and quantified on the additively manufactured. Although the additively manufactured samples were more aggressively attacked by corrosion, they still presented a shiny surface finish at the end of the test, reinforcing the idea of the formation of a passive oxide layer and suggesting that the corrosion was focalized in the surface defects by pitting and crevice corrosion mechanisms.
|
29 |
Novel Composites for Nonlinear Transmission Line ApplicationsAndrew J Fairbanks (10701090) 06 May 2021 (has links)
<p>Nonlinear transmission lines (NLTLs) provide a solid state
alternative to conventional vacuum based high power microwave (HPM) sources.
The three most common NLTL implementations are the lumped element, split ring
resonator (SRR), and the nonlinear bulk material based NLTLs. The nonlinear
bulk material implementation provides the highest power output of the three
configurations, though they are limited to pulse voltages less than 50 kV;
higher voltages are possible when an additional insulator is used, typically SF<sub>6</sub>
or dielectric oil, between the nonlinear material and the outer conductor. The
additional insulator poses a risk of leaking if structural integrity of the
outer conductor is compromised. The desire to provide a fieldable NLTL based
HPM system makes the possibility of a leak problematic. The work reported here develops
a composite based NLTL system that can withstand voltages higher than 50 kV and
not pose a risk of catastrophic failure due to a leak while also decreasing the
size and weight of the device and increasing the output power.</p>
<p>Composites with barium strontium
titanate (BST) or nickel zinc ferrite (NZF) spherical inclusions mixed in a
silicone matrix were manufactured at volume fractions ranging from 5% to 25%.
The dielectric and magnetic parameters were measured from 1-4 GHz using a
coaxial airline. The relative permittivity increased from 2.74±0.01 for the polydimethylsiloxane
(PDMS) host material to 7.45±0.33 after combining PDMS with a 25% volume
fraction of BST inclusions. The relative permittivity of BST and NZF composites
was relatively constant across all measured frequencies. The relative
permeability of the composites increased from 1.001±0.001 for PDMS to 1.43±0.04
for a 25% NZF composite at 1 GHz. The relative permeability of the 25% NZF
composite decreased from 1.43±0.05 at 1 GHz to 1.17±0.01 at 4 GHz. The NZF
samples also exhibited low dielectric and magnetic loss tangents from
0.005±0.01 to 0.091±0.015 and 0.037±0.001 to 0.20±0.038, respectively, for all
volume fractions, although the dielectric loss tangent did increase with volume
fraction. For BST composites, all volume fraction changes of at least 5%
yielded statistically significant changes in permittivity; no changes in BST
volume fraction yielded statistically significant changes in permeability. For
NZF composites, the change in permittivity was statistically significant when
the volume fraction varied by more than 5% and the change in permeability was
statistically significant for variations in volume fraction greater than 10%.
The DC electrical breakdown strength of NZF composites decreased exponentially
with increasing volume fraction of NZF, while BST composites exhibited no
statistically significant variation with volume fraction. </p>
<p>For composites containing both BST
and NZF, increasing the volume fraction of either inclusion increased the
permittivity with a stronger dependence on BST volume fraction. Increasing NZF
volume fraction increased the magnetic permeability, while changing BST volume
fraction had no effect on the composite permeability. The DC dielectric
breakdown voltage decreased exponentially with increased NZF volume fraction.
Adding as little as 5% BST to an NZF composite more than doubled the breakdown
threshold compared to a composite containing NZF alone. For example, adding 10%
BST to a 15% NZF composite increased the breakdown strength by over 800%. The
combination of tunability of permittivity and permeability by managing BST and
NZF volume fractions with the increased dielectric breakdown strength by
introducing BST make this a promising approach for designing high power
nonlinear transmission lines with input pulses of hundreds of kilovolts.</p>
<p>Coaxial nonlinear transmission
lines are produced using composites with NZF inclusions and BST inclusions and
driven by a Blumlein pulse generator with a 10 ns pulse duration and 1.5 ns
risetime. Applying a 30 kV pulse using the Blumlein pulse generator resulted in
frequencies ranging from 1.1 to 1.3 GHz with an output power over 20 kW from
the nonlinear transmission line. The output frequencies increased with
increasing volume fraction of BST, but the high power oscillations
characteristic of an NLTL did not occur. Simulations using LT Spice demonstrated
that an NLTL driven with a Blumlein modulator did not induce high power
oscillations while driving the same NLTL with a pulse forming network did. </p>
<p>Finally, a composite-based NLTL
could be driven directly by a high voltage power supply without a power
modulator to produce oscillations both during and after the formed pulse upon
reaching a critical threshold. The output frequency of the NLTLs is 1 GHz after
the pulse and ranged from 950 MHz to 2.2 GHz during the pulse. These results
demonstrate that the NLTL may be used as both a pulse forming line and high
power microwave source, providing a novel way to reduce device size and weight,
while the use of composites could provide additional flexibility in pulse
output tuning. </p>
|
30 |
Robotic P-GMA DED AM of Aluminum for Large StructuresCanaday, Jack H. January 2021 (has links)
No description available.
|
Page generated in 0.0676 seconds