• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 33
  • 14
  • 13
  • 12
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 218
  • 213
  • 27
  • 25
  • 21
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

The Dictyostelium discoideum RACK1 orthologue has roles in growth and development

Omosigho, N.N., Swaminathan, Karthic, Plomann, M., Müller-Taubenberger, A., Noegel, A.A., Riyahi, T.Y. 28 February 2020 (has links)
Yes / Background: The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 repeat family of proteins. It folds into a beta propeller with seven blades which allow interactions with many proteins. Thus it can serve as a scaffolding protein and have roles in several cellular processes. Results: We identified the product of the Dictyostelium discoideum gpbB gene as the Dictyostelium RACK1 homolog. The protein is mainly cytosolic but can also associate with cellular membranes. DdRACK1 binds to phosphoinositides (PIPs) in protein-lipid overlay and liposome-binding assays. The basis of this activity resides in a basic region located in the extended loop between blades 6 and 7 as revealed by mutational analysis. Similar to RACK1 proteins from other organisms DdRACK1 interacts with G protein subunits alpha, beta and gamma as shown by yeast two-hybrid, pulldown, and immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus neoformans RACK1 proteins it does not appear to take over Gβ function in D. discoideum as developmental and other defects were not rescued in Gβ null mutants overexpressing GFP-DdRACK1. Overexpression of GFP-tagged DdRACK1 and a mutant version (DdRACK1mut) which carried a charge-reversal mutation in the basic region in wild type cells led to changes during growth and development. Conclusion: DdRACK1 interacts with heterotrimeric G proteins and can through these interactions impact on processes specifically regulated by these proteins. / This work was supported by the DFG and SFB670. TYR acknowledges support from the Professorinnen Program of the University of Cologne.
192

Regulation of glycogen phosphorylase genes in Dictyostelium discoideum

Sucic, Joseph F. 06 June 2008 (has links)
The cellular slime mold, Dictyostelium discoideum, provides an ideal model system to study eukaryotic development, cell differentiation, and aging. A crucial developmental event in Dictyostelium is glycogen degradation. The degradation of glycogen provides glucose monomers that are used to synthesize structural components necessary for cellular differentiation. Glycogen degradation is catalyzed by glycogen phosphorylase, and two developmentally regulated glycogen phosphorylase activities have been discovered in Dictyostelium. Glycogen phosphorylase 1 (gp-1) activity is predominant early in development, and is dependent upon 5’ AMP as a positive allosteric modifier; glycogen phosphorylase 2 (gp-2) activity peaks late in development and is independent of 5° AMP. I showed that these two glycogen phosphorylase activities are associated with unique proteins that are the products of two distinct, but related, genes. Both genes were observed to be typical Dictyostelium genes in a number of respects. The gp-1 and gp-2 enzymes were also found to be similar to glycogen phosphorylases from other organisms. I also examined the developmental expression of these genes and found that both mRNAs are developmentally regulated; gp-1 mRNA levels fluctuate during development, while gp-2 mRNA levels increase late in development. The expression of the gp-1 and gp-2 genes is regulated by exogenous cAMP. Exogenous cAMP enhances the level of gp-1 mRNA, apparently through a mechanism that requires intracellular cAMP signaling. Specific DNA sequence elements appear to be required for maximal vegetative and late developmental expression of gp-1. Exogenous cAMP induces the appearance of gp-2 mRNA via a mechanism that appears to be independent of intracellular cAMP signaling. Repeated TA-rich sequences located between nucleotides 193 and 305 upstream of the transcriptional start site are necessary for maximal cAMP induction of gp-2. I also examined the cell type specific expression of gp-1 and gp-2. gp-1 is expressed predominantly in pre-stalk cells. gp-2 1s expressed in both cell types in a temporally regulated fashion; this type of expression has not been reported for other Dictyostelium genes, but, given the importance of glycogen degradation in both stalk and spore cells, it is not inconceivable that such regulation 1s necessary. / Ph. D.
193

Dynamique de la formation des corps multilamellaires et de l'enrobage de bactéries par différents protozoaires

Durocher, Alicia 27 January 2024 (has links)
Plusieurs protozoaires, des eucaryotes unicellulaires ubiquitaires, sont des prédateurs de bactéries. Cependant, les relations bactéries-protozoaires sont complexes et peuvent donner lieu à des interactions particulières. Certains protozoaires, dont l’amibe sociale Dictyostelium discoideum, peuvent produire des corps multilamellaires (CML) lorsqu’ils digèrent des bactéries. Ces structures avaient initialement été identifiées comme des déchets métaboliques, mais il a été suggéré qu’elles pourraient avoir des rôles supplémentaires. Ce ne sont pas toutes les bactéries qui sont digérées par tous les protozoaires, et certaines bactéries résistantes à la digestion peuvent être enrobées dans les corps fécaux de ces protozoaires. Les corps fécaux partagent des similitudes avec les CML. Ce projet de maîtrise visait à éclairer certains aspects des interactions bactéries protozoaires,en caractérisant la voie phagocytique d’amibes sociales environnementales afin d’examiner leur production potentielle de CML, et en analysant l’impact de différentes caractéristiques bactériennes sur la morphologie de l’enrobage par des ciliés. Ces objectifs furent atteints en cultivant les protozoaires d’intérêt en présence de bactéries digestibles(pour la production de CML) ou non (pour l’enrobage) et en faisant appel à diverses méthodes de microscopie. Nos résultats montrent que les quatre isolats d’amibes sociales environnementales, qui appartiennent tous au genre Dictyostelium, mais qui présentent des caractéristiques différentes, peuvent produire des CML lorsque cultivés sur bactéries digestibles. Pour l’étude de la morphologie de l’enrobage de bactéries, les résultats suggèrent que l’hydrophobicité de surface et la taille de l’espèce bactérienne seraient les caractéristiques ayant le plus fort impact sur la morphologie des corps fécaux. Toutefois, il n’est pas exclu que d’autres facteurs interviennent également, incluant des facteurs qui n’étaient pas à l’étude dans ce projet. Ces résultats approfondissent notre compréhension des relations bactéries-protozoaires, mais de nombreuses autres questions sont toujours sans réponse et le développement de méthodes d’analyse plus raffinées sera primordial pour répondre à ces questions. / Many protozoa, ubiquitous unicellular eukaryotes, are predators of bacteria. However, bacteria-protozoa relationships are complex and can lead to some particular interactions. Some protozoa, including the social amoeba Dictyostelium discoideum, can produce multilamellar bodies (MLBs) upon digesting bacteria. These structures were initially identified as metabolic waste, but it has been suggested that they could have additional roles. Not all bacteria can be digested by all protozoa, and some digestion-resisting bacteria can be packaged into the fecal bodies produced by protozoa. These fecal bodies share similarities with MLBs. This master’s project was meant to shed a light on some aspects of bacteria-protozoa interactions, by characterizing the phagocytic pathway of some environmental social amoebae and by analyzing the impact of bacterial characteristics on the morphology of bacteria packaging. These objectives were met by cultivating the protozoa species of interest with either digestible bacteria (for MLB production) or undigestible bacteria (for packaging) and using diverse microscopy methods. Our results show that the four environmental isolates of social amoebae, belonging to the Dictyostelium genus but presenting distinct characteristics, can produce MLBs upon growth on digestible bacteria. As for the study of bacteria packaging morphology, results suggest that a bacteria’s surface hydrophobicity and cell size are the characteristics impacting packaging morphology the most. However, it is not excluded that other factors may intervene as well, including some not considered in this project. These results bring new understanding to bacteria protozoa relationships, but many questions remain. The development of more refined analysis method will be paramount to answering these.
194

Caractérisation des corps multilamellaires sécrétés par Dictyostelium discoideum

Paquet, Valérie 19 April 2018 (has links)
Les amibes sont des eucaryotes unicellulaires qui ingèrent des bactéries par phagocytose pour se nourrir. Les proies sont dégradées au cours de la maturation des phagosomes. Cependant, certaines bactéries pathogènes intracellulaires résistent à la phagocytose. Dans l'amibe, les bactéries acquièrent un enrobage multilamellaire protéolipidique provenant de la cellule hôte appelé corps multilamellaires (CML). Une fois exocytées, les bactéries enrobées sont plus résistantes à divers stress. À ce jour, le mécanisme d'enrobage bactérien reste toujours nébuleux. En utilisant l'amibe modèle Dictyostelium discoideum, il a été possible de reproduire la formation de CML et de les analyser en microscopie. Par la création d'un protocole de production et de purification des CML, les protéines totales ont été extraites des structures puis analysées par spectrométrie de masse. Plus de 24 protéines ont été identifiées comme composantes des CML. L'identification de ces protéines va permettre de mieux comprendre le mécanisme d'enrobage bactérien.
195

Análise do perfil de expressão de serina/treonina fosfatases e prospecção da função biológica para algumas dessas enzimas em Dictyostelium discoideum / Analysis of serine/threonine phosphatases expression profile and biological function prospection for some of these enzymes in Dictyostelium discoideum

Martins, Layla Farage 13 December 2010 (has links)
A fosforilação reversível de proteínas em resíduos de serina e treonina, catalisada por quinases e fosfatases desempenha papel chave na regulação do crescimento e na diferenciação celular em eucariotos. As serina/treonina proteínas fosfatases (PSTPs) são atualmente divididas em três famílias denominadas PPP (PhosphoProtein Phosphatase), PPM (Phosphoprotein Phosphatase Magnesium-dependent) e FCP/SCP (RNA polymerase II CTD phosphatase), sendo que os membros da família PPP são, frequentemente, holoenzimas compostas de uma subunidade catalítica associada a uma ou mais subunidades reguladoras, as quais definem a função, localização e especificidade ao substrato da fosfatase. Neste trabalho, analisamos, através de RT-qPCR, o perfil de expressão dos genes codificadores de subunidades catalíticas de PPPs de Dictyostelium discoideum (PP1c, PP2Ac, PP4c, PP4c-like, PP6c e PP5c) e de 16 potenciais parceiros moleculares de algumas destas subunidades catalíticas, tais como DdI-2 e DdI-3, sabidamente inibidores da PP1c. Em resposta ao estresse térmico de células da fase de crescimento, detectamos o aumento dos níveis de transcritos de PP4c e PP6c e também de DdI-2, DdI-3 e DDB_G0292194, esta última, uma proteína de função desconhecida que interage com a PP1c em ensaios de duplo-híbrido em leveduras. Por outro lado, durante o estresse hiper-osmótico observamos a diminuição dos níveis de transcritos de quase todos os genes analisados com exceção de DdI-2 e DDB_G0292194. O nível de expressão de DdPP1c, DdI-2, DdI-3 e DDB_G0292194 também foi analisado em resposta ao estresse oxidativo e apenas o DDB_G0292194 foi induzido nesta condição. Os genes de PP1c, PP4, PP5c e PP6c são expressos durante todo o ciclo de vida de D. discoideum, mas a expressão de alguns dos genes analisados aumenta em uma fase definida do ciclo de desenvolvimento como é o caso de DDB_G0292194 que tem níveis de transcritos aumentados na fase de agregação. Este gene codifica uma proteína hipotética de 559 aminoácidos, que apresenta um domínio FHA (ForkHead-Associated) em sua região aminoterminal, além de uma sequência similar ao motivo consenso de ligação à PP1c. Ensaios no sistema de duplo-híbrido em leveduras confirmaram que a interação entre DDB_G0292194 e DdPP1c independe do domínio FHA. Verificamos, também, que o mutante nocaute de DDB_G0292194 apresenta uma morfologia alterada em condições padrões de cultivo, tanto na fase de crescimento como durante o desenvolvimento, além de uma maior sensibilidade ao estresse oxidativo causado pelo peróxido de hidrogênio quando comparado à linhagem selvagem. Em conjunto, nossos resultados evidenciam a importância das PPPs na resposta a diferentes tipos de estresse e para o crescimento e desenvolvimento de D. discoideum. / Reversible phosphorylation of proteins on serine and threonine residues, catalyzed by kinases and phosphatases plays a key role in growth and cell differentiation regulation in eukaryotes. Protein serine/threonine phosphatases (PSTPs) are currently divided into three families named PPP (Phosphoprotein Phosphatase), PPM (Phosphoprotein Phosphatase Magnesium-dependent) and FCP/SCP (RNA polymerase II CTD phosphatase). The PPP family members are often holoenzymes composed of a catalytic subunit associated with one or more regulatory subunits, which define function, localization and substrate specificity of the phosphatase. In this work, we have examined, by RT-qPCR, the expression profile of genes encoding PPP catalytic subunits of Dictyostelium discoideum (PP1c, PP2Ac, PP4c, PP4c-like, PP6c and PP5c) and 16 potential molecular partners for some of these catalytic subunits, such as DdI-2 and DdI-3, both known as PP1c inhibitors. In response to heat stress of growth phase cells, we detected increased levels of transcripts of PP4c and PP6c as well as of DdI-2, DdI-3, and DDB_G0292194, the latter a protein of unknown function that interacts with PP1c in yeast two-hybrid assays. Moreover, during the hyperosmotic stress we observed decreased transcript levels of nearly all genes examined except DdI-2 and DDB_G0292194. The expression level of DdPP1c, DdI-2, DdI-3 and DDB_G0292194 was also analyzed in response to oxidative stress and only DDB_G0292194 was induced in this condition. PP1c, PP4c, PP5c and PP6c genes are expressed throughout growth and development of D. discoideum while transcript levels of some the analysed genes were increased at a defined stage of the developmental cycle as in the case of DDB_G0292194, which increased during aggregation. This gene encodes a hypothetical protein of 559 amino acids bearing a FHA (ForkHead-Associated) domain in its aminoterminal region and a sequence matching the PP1c binding consensus motif. Yeast two-hybrid assays confirmed that DDB_G0292194 and DdPP1c interaction does not depend on FHA domain. We also found that DDB_G0292194 knockout mutant exibits an altered morphology on standard growth and developmental conditions and shows an increased sensitivity to oxidative stress induced by hydrogen peroxide in comparison to the wild type strain. Taken together, our results highlight the importance of PPPs in the response to different types of stress and for growth and development of D. discoideum.
196

Directional sensing and chemotaxis in eukaryotic cells - a quantitative study / Directional Sensing und Chemotaxis eukaryotischer Zellen - eine quantitative Studie

Amselem, Gabriel 13 October 2010 (has links)
No description available.
197

Análise do perfil de expressão de serina/treonina fosfatases e prospecção da função biológica para algumas dessas enzimas em Dictyostelium discoideum / Analysis of serine/threonine phosphatases expression profile and biological function prospection for some of these enzymes in Dictyostelium discoideum

Layla Farage Martins 13 December 2010 (has links)
A fosforilação reversível de proteínas em resíduos de serina e treonina, catalisada por quinases e fosfatases desempenha papel chave na regulação do crescimento e na diferenciação celular em eucariotos. As serina/treonina proteínas fosfatases (PSTPs) são atualmente divididas em três famílias denominadas PPP (PhosphoProtein Phosphatase), PPM (Phosphoprotein Phosphatase Magnesium-dependent) e FCP/SCP (RNA polymerase II CTD phosphatase), sendo que os membros da família PPP são, frequentemente, holoenzimas compostas de uma subunidade catalítica associada a uma ou mais subunidades reguladoras, as quais definem a função, localização e especificidade ao substrato da fosfatase. Neste trabalho, analisamos, através de RT-qPCR, o perfil de expressão dos genes codificadores de subunidades catalíticas de PPPs de Dictyostelium discoideum (PP1c, PP2Ac, PP4c, PP4c-like, PP6c e PP5c) e de 16 potenciais parceiros moleculares de algumas destas subunidades catalíticas, tais como DdI-2 e DdI-3, sabidamente inibidores da PP1c. Em resposta ao estresse térmico de células da fase de crescimento, detectamos o aumento dos níveis de transcritos de PP4c e PP6c e também de DdI-2, DdI-3 e DDB_G0292194, esta última, uma proteína de função desconhecida que interage com a PP1c em ensaios de duplo-híbrido em leveduras. Por outro lado, durante o estresse hiper-osmótico observamos a diminuição dos níveis de transcritos de quase todos os genes analisados com exceção de DdI-2 e DDB_G0292194. O nível de expressão de DdPP1c, DdI-2, DdI-3 e DDB_G0292194 também foi analisado em resposta ao estresse oxidativo e apenas o DDB_G0292194 foi induzido nesta condição. Os genes de PP1c, PP4, PP5c e PP6c são expressos durante todo o ciclo de vida de D. discoideum, mas a expressão de alguns dos genes analisados aumenta em uma fase definida do ciclo de desenvolvimento como é o caso de DDB_G0292194 que tem níveis de transcritos aumentados na fase de agregação. Este gene codifica uma proteína hipotética de 559 aminoácidos, que apresenta um domínio FHA (ForkHead-Associated) em sua região aminoterminal, além de uma sequência similar ao motivo consenso de ligação à PP1c. Ensaios no sistema de duplo-híbrido em leveduras confirmaram que a interação entre DDB_G0292194 e DdPP1c independe do domínio FHA. Verificamos, também, que o mutante nocaute de DDB_G0292194 apresenta uma morfologia alterada em condições padrões de cultivo, tanto na fase de crescimento como durante o desenvolvimento, além de uma maior sensibilidade ao estresse oxidativo causado pelo peróxido de hidrogênio quando comparado à linhagem selvagem. Em conjunto, nossos resultados evidenciam a importância das PPPs na resposta a diferentes tipos de estresse e para o crescimento e desenvolvimento de D. discoideum. / Reversible phosphorylation of proteins on serine and threonine residues, catalyzed by kinases and phosphatases plays a key role in growth and cell differentiation regulation in eukaryotes. Protein serine/threonine phosphatases (PSTPs) are currently divided into three families named PPP (Phosphoprotein Phosphatase), PPM (Phosphoprotein Phosphatase Magnesium-dependent) and FCP/SCP (RNA polymerase II CTD phosphatase). The PPP family members are often holoenzymes composed of a catalytic subunit associated with one or more regulatory subunits, which define function, localization and substrate specificity of the phosphatase. In this work, we have examined, by RT-qPCR, the expression profile of genes encoding PPP catalytic subunits of Dictyostelium discoideum (PP1c, PP2Ac, PP4c, PP4c-like, PP6c and PP5c) and 16 potential molecular partners for some of these catalytic subunits, such as DdI-2 and DdI-3, both known as PP1c inhibitors. In response to heat stress of growth phase cells, we detected increased levels of transcripts of PP4c and PP6c as well as of DdI-2, DdI-3, and DDB_G0292194, the latter a protein of unknown function that interacts with PP1c in yeast two-hybrid assays. Moreover, during the hyperosmotic stress we observed decreased transcript levels of nearly all genes examined except DdI-2 and DDB_G0292194. The expression level of DdPP1c, DdI-2, DdI-3 and DDB_G0292194 was also analyzed in response to oxidative stress and only DDB_G0292194 was induced in this condition. PP1c, PP4c, PP5c and PP6c genes are expressed throughout growth and development of D. discoideum while transcript levels of some the analysed genes were increased at a defined stage of the developmental cycle as in the case of DDB_G0292194, which increased during aggregation. This gene encodes a hypothetical protein of 559 amino acids bearing a FHA (ForkHead-Associated) domain in its aminoterminal region and a sequence matching the PP1c binding consensus motif. Yeast two-hybrid assays confirmed that DDB_G0292194 and DdPP1c interaction does not depend on FHA domain. We also found that DDB_G0292194 knockout mutant exibits an altered morphology on standard growth and developmental conditions and shows an increased sensitivity to oxidative stress induced by hydrogen peroxide in comparison to the wild type strain. Taken together, our results highlight the importance of PPPs in the response to different types of stress and for growth and development of D. discoideum.
198

The small GTPases Ras and Rap1 bind to and control TORC2 activity

Khanna, Ankita, Lotfi, Pouya, Chavan, Anita J., Montaño, Nieves M., Bolourani, Parvin, Weeks, Gerald, Shen, Zhouxin, Briggs, Steven P., Pots, Henderikus, Van Haastert, Peter J. M., Kortholt, Arjan, Charest, Pascale G. 13 May 2016 (has links)
Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration.
199

Structural and Functional Characterization of the Soluble Cell Adhesion Molecule DdCAD-1in Dictyostelium discoideum

Sriskanthadevan, Shrivani 31 August 2011 (has links)
The cadA gene in Dictyostelium encodes a unique Ca2+-dependent cell adhesion molecule DdCAD-1. It is synthesized as a soluble protein in the cytoplasm and then transported to the plasma membrane by contractile vacuoles. The solution structures of Ca2+-free and Ca2+-bound DdCAD-1 reveals that it contains two β-sandwich domains, belonging to the βγ-crystallin and immunoglobulin fold classes, respectively. Whereas the N-terminal domain has a major role in homophilic binding, the C-terminal domain tethers the protein to the cell membrane. Although hydrophobic interactions constitute the major force for adhesion, electrostatic interactions may act as a ‘switch’ to regulate the homophilic binding by a change in electrostatic potential caused by the binding of Ca2+ to the three binding sites. To further investigate DdCAD-1 transport, DdCAD-1-GFP fusion proteins were expressed in cadA-null cells. Time-lapse microscopy revealed that DdCAD-1 was imported by invagination of the contractile vacuole membrane. The N-terminal, C-terminal domains, and two of the three Ca2+-binding site mutant forms of DdCAD-1 failed to enter the contractile vacuole, suggesting that Ca2+-binding and the integrity of DdCAD-1 are required for import. Indeed, proteins with altered conformation failed to enter the contractile vacuole, indicating that the import signal is integrated in the three-dimensional structure of DdCAD-1. Finally, we describe how the cadA gene acts as a single-gene green beard. In chimera experiments, cells expressing DdCAD-1 were more likely to form fruiting bodies than cadA-null cells on soil plates. Here cadA behaved as a single gene green beard. However, cadA exhibited anti-green beard behaviour on non-nutrient agar plates. Wild-type cells differentiated mostly into prestalk cells and eventually died, whereas the cadA-null cells survived as spores. DdCAD-1 was enriched in cell-cell contact regions of anterior cells, while it was mostly localized in the cytoplasm of posterior cells. The presence of DdCAD-1 on the cell surface of prestalk cells is crucial for cell sorting, which in turn explain the anti-green beard effect observed in chimeras containing cadA+ and cadA- cells. These observations demonstrate that DdCAD-1 plays a direct role in cell sorting through differential cell-cell adhesion which results from the differential distribution of DdCAD-1.
200

Structural and Functional Characterization of the Soluble Cell Adhesion Molecule DdCAD-1in Dictyostelium discoideum

Sriskanthadevan, Shrivani 31 August 2011 (has links)
The cadA gene in Dictyostelium encodes a unique Ca2+-dependent cell adhesion molecule DdCAD-1. It is synthesized as a soluble protein in the cytoplasm and then transported to the plasma membrane by contractile vacuoles. The solution structures of Ca2+-free and Ca2+-bound DdCAD-1 reveals that it contains two β-sandwich domains, belonging to the βγ-crystallin and immunoglobulin fold classes, respectively. Whereas the N-terminal domain has a major role in homophilic binding, the C-terminal domain tethers the protein to the cell membrane. Although hydrophobic interactions constitute the major force for adhesion, electrostatic interactions may act as a ‘switch’ to regulate the homophilic binding by a change in electrostatic potential caused by the binding of Ca2+ to the three binding sites. To further investigate DdCAD-1 transport, DdCAD-1-GFP fusion proteins were expressed in cadA-null cells. Time-lapse microscopy revealed that DdCAD-1 was imported by invagination of the contractile vacuole membrane. The N-terminal, C-terminal domains, and two of the three Ca2+-binding site mutant forms of DdCAD-1 failed to enter the contractile vacuole, suggesting that Ca2+-binding and the integrity of DdCAD-1 are required for import. Indeed, proteins with altered conformation failed to enter the contractile vacuole, indicating that the import signal is integrated in the three-dimensional structure of DdCAD-1. Finally, we describe how the cadA gene acts as a single-gene green beard. In chimera experiments, cells expressing DdCAD-1 were more likely to form fruiting bodies than cadA-null cells on soil plates. Here cadA behaved as a single gene green beard. However, cadA exhibited anti-green beard behaviour on non-nutrient agar plates. Wild-type cells differentiated mostly into prestalk cells and eventually died, whereas the cadA-null cells survived as spores. DdCAD-1 was enriched in cell-cell contact regions of anterior cells, while it was mostly localized in the cytoplasm of posterior cells. The presence of DdCAD-1 on the cell surface of prestalk cells is crucial for cell sorting, which in turn explain the anti-green beard effect observed in chimeras containing cadA+ and cadA- cells. These observations demonstrate that DdCAD-1 plays a direct role in cell sorting through differential cell-cell adhesion which results from the differential distribution of DdCAD-1.

Page generated in 0.0715 seconds