• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles continus et "discrets" pour les problèmes de localisation et de rupture fragile et/ou ductile

Brancherie, Delphine 17 December 2003 (has links) (PDF)
L'objectif de la thèse est de développer une méthode éléments finis permettant de rendre compte de l'apparition de zones de localisation de façon indépendante du maillage. Ceci est réalisé par la construction d'éléments finis enrichis capables de reproduire des discontinuités du champ de déplacement. L'approche proposée permet la description du comportement des structures massives par la prise en compte simultanée de deux types de dissipation une dissipation volumique produite à l'échelle de la structure et prise en compte par des modèles continus classiques et une dissipation surfacique produite à l'échelle des bandes de localisation et décrite par l'introduction de champs de déplacement discontinus associés à des lois "discrètes" liant traction et saut de déplacement. Cette approche a été développée et implantée pour des modèles de plasticité (représentation de bandes de cisaillement) et pour des modèles d'endommagement (prise en compte de l'apparition de macro fissures).
2

Rock mechanics, failure phenomena with pre-existing cracks and internal fluid flow through cracks / Mécanique des roches, phénomènes de rupture avec la prise en compte des fissures existantes et l'écoulement du fluide interne à travers les fissures

Nikolic, Mijo 28 September 2015 (has links)
Cette thèse aborde le problème de la rupture localisée dans les roches, qui caractérise un grand nombre d'applications dans le domaine du génie civil, tels que la rupture du barrage, effondrement des fondations, la stabilité des excavations ou les tunnels, les glissements de terrain et les éboulements. Le risque de rupture localisée devrait être mieux appréhendé pour mieux l'éviter. La rupture localisée dans les roches est généralement caractérisée par une une rupture soudaine et quasi-fragile sans avertissement sous forme de grandes déformations et visibles avant la rupture elle-même. Cela se produit également sous l'influence des hétérogénéités matériels, des fissures existantes et d'autres défauts initiaux.Les trois nouveaux modèles numériques, intégrant les mécanismes de ruptures localisées, l'hétérogénéité de la roche et des fissures existantes et d'autres défauts, sont présentés dans cette thèse. Le premier modèle propose une représentation en 2D de roche composite à deux phases, où la phase solide représente la roche intacte et la faible phase indique les défauts initiaux. Le deuxième modèle représente l'extension du modèle précédent vers un espace 3D, où est considéré un ensemble complet de mécanismes de ruptures en 3D. Les propriétés hétérogènes sont considérées ici par une distribution aléatoire en accord avec la variation statistique de Gausse. Ce modèle est également utilisé pour l'analyse de la roche intacte par spécimens possédant des écarts de formes géométriques qui influencent la résistance à la compression uni-axiale. Le troisième modèle est un modèle en 2D, traitant l’interaction volumétrique entre un fluide et la structure sous l’influence de l’écoulement du fluide à travers le milieu de la roche poreuse.L'approche des lattices discrètes est choisie pour construire un cadre général pour les trois modèles, où les cellules de Voronoï représentent les grains de roche tenus ensemble par les poutres de Timoshenko comme des liens de cohésion. La cinématique améliorée est caractérisée par l'approche intégrée des discontinuités comme un supplément à la cinématique standard de liens cohérents. Cela sert pour la propagation de la macro fissure dans tous les modes de ruptures et de leurs combinaisons, entre les grains de la roche. La formation de la zone du processus de rupture suivie par des microfissures coalescentes, précédant la rupture localisée, est aussi considérée dans les modèles. L’écoulement du fluide est régi par la loi de Darcy, tandis que les conditions de couplage obéissent à la théorie de poroélasticité de Biot.Les résultats des modèles numériques ont été vérifiés par des exemples de la littérature dans le cas des modèles en 2D. Le modèle en 3D a été validé suite aux résultats expérimentaux effectués sur 90 échantillons de roches, où sont considérées de légères déviations géométriques des spécimens.La présentation de ces modèles, ainsi que leurs aspects de mise en œuvre sont présentés en détail. L’approche avec une discontinuité intrinsèque et le caractère local des améliorations nécessaires à la simulation des discontinuités de déplacement orientent vers la condensation statique des degrés de liberté améliorés sont efficacement intégrés dans l’architecture des éléments finis. / This thesis deals with the problem of localized failure in rocks, which occurs often in civil engineering practice like in dam failure, foundation collapse, stability of excavaations, slopes and tunnels, landslides and rock falls. The risk of localized failure should be better understood in order to be prevented. The localized failure in rocks is usually characterized by a sudden and brittle failure without warning in a sense of larger and visible deformations prior to failure. This happens also under the strong influence of material heterogeneities, preexisting cracks and other defects.The three novel numerical models, incorporating the localized failure mechanisms, heterogeneity of rock and preexisting cracks and other defects, are presented in this thesis. First model deals with 2D plane strain two-phase rock composite, where stronger phase represents the intact rock and weaker phase initial defects. Second model represents the extension of the previous model towards the 3D space, where full set of 3D failure mechanisms is considered. Heterogeneous properties are taken here through the random distribution and Gauss statistical variation of material properties. The latter model is also used for the analysis of intact rock core specimens geometrical shape deviations influencing the uni-axial compressive strength. Third model is a 2D, dealing with volumetric fluid-structure interaction and localized failure under the influence of fluid flow throughthe porous rock medium.The discrete beam lattice approach is chosen for general framework for three models, where Voronoi cells represent the rock grains kept together by Timoshenko beams as cohesive links. The enhanced kinematics characterized for embedded discontinuity approach is added upon standard kinematics of cohesive links. This serves for the macro crack propagation in all failure modes and their combinations, between the rock grains. The fracture process zone formation followed by micro-cracks coalescence, preceding the localized failure, is considered as well. Fluid flow is governed by a Darcy law, while coupling conditions obey Biot's theory of poroplasticity. The results of the numerical models were verified by the benchmarks available from literature in 2D case. The 3D model was validated against the experimental results conducted on 90 rock specimens, where even slight geometrical deviations of specimens are considered.Presentation of these models, as well as their implementation aspects are given in full detail. Embedded discontinuity concept and the local nature of enhancements required to capture the displacement discontinuities leads to the very efficient approach with static condensation of enhanced degrees of freedom and technique that can be efficiently incorporated into finite element code architecture.
3

Modélisation multi-échelles des shales : influence de la microstructure sur les propriétés macroscopiques et le processus de fracturation / Multiscale modeling of shale : influence of microstructure on the macroscopic properties and the fracturing process

Vallade, Alexis 07 November 2016 (has links)
Le travail présenté dans ce document consiste à la réalisation d’outils et de méthodes numériques pour modéliser l’influence de la microstructure des shales à la fois sur les propriétés macroscopiques ainsi que sur le processus de fissuration. La première partie du document est dédiée à la description d’un modèle Éléments Finis 3D (E-FEM) développé pour représenter la microstructure ainsi que la fissuration. Ce modèle fait parti des méthodes à discontinuités. Deux critères de fissuration sont décrits, un en mode I (critère de Rankine) et un second en mode II (critère de Mohr-Coulomb). Ces critères seront utilisés pour caractériser l’influence de la microstructure des shales sur les propriétés macroscopiques à l’aide d’essai de compression triaxiale. Plus particulièrement l’impact de la présence de kérogène dans la roche de schiste sera étudié. La seconde partie présente une méthode de décomposition de domaine (la méthode de mortier) utilisée pour réduire les temps de calcul. Cette méthode a pour avantage de permettre l’utilisation de maillage non conforme, ainsi un raffinement local du maillage est possible. Cette méthode a été intégrée à un code de calcul utilisant la programmation orientée composant et plus particulièrement à l’aide du middleware CTL. Le code de calcul permet de résoudre des problèmes linéaires et non linéaires en utilisant le modèle E-FEM. La dernière partie concerne l'étude de l'influence de la minéralogie sur le processus de fissuration à l'aide du code de calcul parallélisé. Un modèle de couplage hydro-mécanique est ensuite développé et appliqué au calcul de fissuration pour mesurer l'impact de la fissuration sur la perméabilité des shales. / This research study aims at developing tools and numerical methods to model the influence of the microstructure of shales on macroscopic properties and cracking process. The first part of the document is dedicated to the description of a 3D Finite Elements model (E-FEM) developed to represent the microstructure and cracking phenomena. This model is part of the methods with discontinuities. Two cracking criteria are described, a mode I criteria (Rankine) and a mode II criteria (Mohr-Coulomb). These criteria will be used to characterize the influence of the microstructure of shales on the macroscopics properties in triaxial compression testing. More particularly, the impact of the presence of kerogen in the shale rock is considered. The second part presents a domain decomposition method (mortar method) used to reduce computation time. This method has the advantage of allowing the use of non-conforming mesh, so a local mesh refinement is possible. This method has been integrated into a computing code using the component-oriented programming and more specifically the CTL middleware. The computing code solves both linear and nonlinear problems using the E-FEM model. The last part concerns the study of the influence of mineralogy on the cracking process using the parallelized calculation code. A hydro-mechanical coupling model is then developed and applied to the calculation of crack to measure the impact of cracking on the shales permeability.
4

Contribution aux approches multi-échelles séquencées pour la modélisation numérique des matériaux à matrice cimentaire / Sequential multi-scale approch : application to heterogeneous quasi-brittle material

Benkemoun, Nathan 10 December 2010 (has links)
L'objectif principal de cette thèse est de développer un modèle numérique capable de proposer une représentation fine des phénomènes de fissuration pour les matériaux quasi-fragiles à matrice cimentaire. Dans ce sens, l'échelle pertinente retenue est l'échelle mesoscopique. L'échelle mesoscopique est ici de l'ordre du centimètre et le matériau peut être considéré comme bi-phasique (agrégats inclus dans un mortier, contenant lui même des inclusions de taille inférieure). Par ailleurs, de part la diversité des phénomènes de fissuration pour les matériaux quasi-fragiles comme le béton, il est nécessaire de mettre en place un modèle capable de représenter explicitement les fissures à l'interface agrégats/mortier et/ou dans n'importe quelles des deux phases (agrégats et mortier). La modélisation numérique des phénomènes de fissuration proposée s'inscrit, ici, dans le cadre de la méthode des éléments finis à discontinuité forte. Plus précisément, la fissure est ici définie comme l'apparition d'une discontinuité de déplacements ou encore d'une zone d'épaisseur nulle dans laquelle toutes les déformations sont localisées. Elle correspond au cas extrême des bandes de localisation observées dans les sols ou les roches avec une largeur des bandes tendant vers zéro. Par ailleurs, le modèle proposé intégre aussi une discontinuité faible (discontinuité de déformations) afin de capturer les hétérogénéités sans que le maillage soit contraint. Finalement le but est d'intégrer ce meso-modèle dans le cadre d'une approche multi-échelle séquencée permettant le transfert des informations du niveau mesoscopique vers le niveau macroscopique ou au moins sa borne inférieure, le Volume élémentaire Représentatif. Cette approche séquencée permet, par exemple, de déterminer une surface de rupture macroscopique (dans l'esprit d'une fonction seuil) intégrant les principales caractéristiques des matériaux cimentaires. / The main goal of this work is to develop a numerical model capable of providing a fine representation of cracks phenomenon in the case of quasi-brittle material such as concrete. In that way, the relevant chosen scale is the mesoscopic one. The order of magnitude of this scale is here tehe centimeter and the material can be considered as a two-phase material (aggregates melt into a mortar matrix). In addition, due to the diversity of cracks phenomenon in concrete like-material, it is necessary to introduce a model able to explicitely represent cracks at the interface aggregates/mortar matrix and/or in any of the two phases. The numerical cracks phenomenon modeling proposed in this work is cast in the framework of the finite element method with strong discontinuity. Moreover, the proposed model takes into account a weak discontinuity in order to capture heterogeneities without a mesh constrained by the phyysical interfaces between the aggregates and the mortar matrix. Finally, the aim is to use this meso-model in the framework of a sequential multi-scale approach which allows to transfer information from the meso-scale toward the macro-scale.
5

Contribution aux approches multi-échelles séquencées pour la modélisation numérique des matériaux à matrice cimentaire

Benkemoun, Nathan 10 December 2010 (has links) (PDF)
L'objectif principal de cette thèse est de développer un modèle numérique capable de proposer une représentation fine des phénomènes de fissuration pour les matériaux quasi-fragiles à matrice cimentaire. Dans ce sens, l'échelle pertinente retenue est l'échelle mesoscopique. L'échelle mesoscopique est ici de l'ordre du centimètre et le matériau peut être considéré comme bi-phasique (agrégats inclus dans un mortier, contenant lui même des inclusions de taille inférieure). Par ailleurs, de part la diversité des phénomènes de fissuration pour les matériaux quasi-fragiles comme le béton, il est nécessaire de mettre en place un modèle capable de représenter explicitement les fissures à l'interface agrégats/mortier et/ou dans n'importe quelles des deux phases (agrégats et mortier). La modélisation numérique des phénomènes de fissuration proposée s'inscrit, ici, dans le cadre de la méthode des éléments finis à discontinuité forte. Plus précisément, la fissure est ici définie comme l'apparition d'une discontinuité de déplacements ou encore d'une zone d'épaisseur nulle dans laquelle toutes les déformations sont localisées. Elle correspond au cas extrême des bandes de localisation observées dans les sols ou les roches avec une largeur des bandes tendant vers zéro. Par ailleurs, le modèle proposé intégre aussi une discontinuité faible (discontinuité de déformations) afin de capturer les hétérogénéités sans que le maillage soit contraint. Finalement le but est d'intégrer ce meso-modèle dans le cadre d'une approche multi-échelle séquencée permettant le transfert des informations du niveau mesoscopique vers le niveau macroscopique ou au moins sa borne inférieure, le Volume élémentaire Représentatif. Cette approche séquencée permet, par exemple, de déterminer une surface de rupture macroscopique (dans l'esprit d'une fonction seuil) intégrant les principales caractéristiques des matériaux cimentaires.
6

Modélisation numérique des phénomènes d'amortissement par dissipation d'énergie matérielle dans les structures de type portique en béton armé sous séisme.

Jehel, Pierre 10 December 2009 (has links) (PDF)
Des méthodes de dimensionnement parasismique récentes reposent sur la prédiction de quantités locales dans les analyses sismiques non-linéaires. Dans ce contexte la modélisation de l'amortissement avec un modèle visqueux est un point faible. Cette thèse porte sur le développement d'une représentation physique des sources d'amortissement matérielles dans les éléments structuraux des portiques en béton armé (BA). Nous avons formulé et implanté dans un code de calculs par éléments finis (EF) un nouvel élément de poutre multifibre basé sur une cinématique de Euler-Bernoulli enrichie par des sauts de déplacement, et une nouvelle loi de béton robuste capable de représenter les principales sources de dissipation matérielles. Le modèle de matériau a été développé dans le cadre donné par la thermodynamique avec variables internes et une méthode des EF mixte a été retenue pour l'implantation numérique. Les simulations numériques faites avec cet élément multifibre montrent que des sources de dissipation autres que matérielles devraient être ajoutées dans les modèles et que ce nouvel élément est capable de simuler l'évolution non-linéaire d'un portique en BA en un temps de calcul satisfaisant.
7

Solution methods for failure analysis of massive structural elements / Méthodes de résolution des problèmes à rupture des éléments structures massives / Metode za porušno analizo masivnih konstrukcijskih elementov

Stanic, Andjelka 07 December 2017 (has links)
Objectifs de la thèse : l’analyse à rupture de structure de type solides et membranes et la modélisation de la rupture quasi-fragile par la méthode des éléments finis à forte discontinuité en cas de solide 2D. Dans ce travail, la méthode de continuation avec une équation de contrainte quadratique est présentée sous sa forme linéarisée. En présence de ruptures locales, la méthode de continuation standard peut échouer. Afin d’améliorer la performance de cette méthode, nous proposons de nouvelles versions plus sophistiquées qui prennent en compte les ruptures locales des matériaux. D’une part, une version est basée sur une équation supplémentaire adaptative imposant une limitation. Cette version est considérée relativement satisfaisante pour les matériaux adoucissants. D’autres versions sont basées sur le contrôle de la dissipation incrémentale pour les matériaux inélastiques. Plusieurs formulations d’éléments finis à forte discontinuité sont présentées en détails pour l’analyse de rupture quasi-fragile. Les approximations discrètes du champ de déplacement sont basées sur des éléments quadrilatéraux isoparamétriques ou des éléments quadrilatéraux enrichis par la méthode des modes incompatibles. Afin de décrire la formation d’une fissure ainsi que son ouverture, la cinématique de l’élément est enrichie par quatre modes de séparation et des paramètres cinématiques. On a également proposé un nouvel algorithme de repérage de fissure pour l’évaluation de la propagation de la fissure à travers le maillage. Plusieurs exemples numériques sont réalisés afin de montrer la performance de l’élément quadrilatéral à forte discontinuité ainsi que l’algorithme de repérage de fissure proposé. / The thesis studies: the methods for failure analysis of solids and structures, and the embedded strong discontinuity finite elements for modelling material failures in quasi brittle 2d solids. As for the failure analysis, the consistently linearized path-following method with quadratic constraint equation is first presented and studied in detail. The derived path-following method can be applied in the nonlinear finite element analysis of solids and structures in order to compute a highly nonlinear solution path. However, when analysing the nonlinear problems with the localized material failures (i.e. materialsoftening), standard path-following methods can fail. For this reason we derived new versions of the pathfollowing method, with other constraint functions, more suited for problems that take into account localized material failures. One version is based on adaptive one-degree-of-freedom constraint equation, which proved to be relatively successful in analysing problems with the material softening that are modelled by the embedded-discontinuity finite elements. The other versions are based on controlling incremental plastic dissipation or plastic work in an inelastic structure. The dissipation due to crack opening and propagation, computed by e.g. embedded discontinuity finite elements, is taken into account. The advantages and disadvantages of the presented path-following methods with different constraint equations are discussed and illustrated on a set of numerical examples. As for the modelling material failures in quasi brittle 2d solids (e.g. concrete), several embedded strong discontinuity finite element formulations are derived and studied. The considered formulations are based either on: (a) classical displacement-based isoparametric quadrilateral finite element or (b) on quadrilateral finite element enhanced with incompatible displacements. In order to describe a crack formation and opening, the element kinematics is enhanced by four basic separation modes and related kinematic parameters. The interpolation functions that describe enhanced kinematics have a jump in displacements along the crack. Two possibilities were studied for deriving the operators in the local equilibrium equations that are responsible for relating the bulk stresses with the tractions in the crack. For the crack embedment, the major-principle-stress criterion was used, which is suitable for the quasi brittle materials. The normal and tangential cohesion tractions in the crack are described by two uncoupled, nonassociative damage-softening constitutive relations. A new crack tracing algorithm is proposed for computation of crack propagation through the mesh. It allows for crack formation in several elements in a single solution increment. Results of a set of numerical examples are provided in order to assess the performance of derived embedded strong discontinuity quadrilateral finite element formulations, the crack tracing algorithm, and the solution methods. / Doktorska disertacija obravnava: (i) metode za porušno analizo trdnih teles in konstrukcij, ter (ii) končne elemente z vgrajeno močno nezveznostjo za modeliranje materialne porušitve v kvazi krhkih 2d trdnih telesih. Za porušno analizo smo najprej preučili konsistentno linearizirano metodo sledenja ravnotežne poti skvadratno vezno enačbo (metoda krožnega loka). Metoda omogoča izračun analize nelinearnih modelov, ki imajo izrazito nelinearno ravnotežno pot. Kljub temu standardne metode sledenja poti lahko odpovedo,kadar analiziramo nelinearne probleme z lokalizirano materialno porušitvijo (mehčanje materiala). Zatosmo izpeljali nove različice metode sledenja poti z drugimi veznimi enačbami, ki so bolj primerne zaprobleme z lokalizirano porušitvijo materiala. Ena različica temelji na adaptivni vezni enačbi, pri katerivodimo izbrano prostostno stopnjo. Izkazalo se je, da je metoda relativno uspešna pri analizi problemov zmaterialnim mehčanjem, ki so modelirani s končnimi elementi z vgrajeno nezveznostjo. Druge različicetemeljijo na kontroli plastične disipacije ali plastičnega dela v neelastičnem trdnem telesu ali konstrukciji.Upoštevana je tudi disipacija zaradi širjenja razpok v elementih z vgrajeno nezveznostjo. Prednosti inslabosti predstavljenih metod sledenja ravnotežnih poti z različnimi veznimi enačbami so predstavljeni naštevilnih numeričnih primerih. Za modeliranje porušitve materiala v kvazi krhkih 2d trdnih telesih (npr. betonskih) smo izpeljali različne formulacije končnih elementov z vgrajeno močno nezveznostjo v pomikih. Obravnavane formulacije temeljijo bodisi (a) na klasičnem izoparametričnem štirikotnem končnem elementu bodisi (b) na štirikotnem končnem elementu, ki je izboljšan z nekompatibilnimi oblikami za pomike. Nastanek in širjenje razpoke opišemo tako, da kinematiko v elementu dopolnimo s štirimi osnovnimi oblikami širjenja razpoke in pripadajočimi kinematičnimi parametri. Interpolacijske funkcije, ki opisujejo izboljšano kinematiko, zajemajo skoke v pomikih vzdolž razpoke. Obravnavali smo dva načina izpeljave operatorjev, ki nastopajo v lokalni ravnotežni enačbi in povezujejo napetosti v končnem elementu z napetostmi na vgrajeni nezveznosti. Kriterij za vstavitev nezveznosti (razpoke) temelji na kriteriju največje glavne napetosti in je primeren za krhke materiale. Normalne in tangentne kohezijske napetosti v razpoki opišemo z dvema nepovezanima, poškodbenima konstitutivnima zakonoma za mehčanje. Predlagamo novi algoritem za sledenje razpoki za izračun širjenja razpoke v mreži končnih elementov. Algoritem omogoča formacijo razpok v več končnih elementih v enem obtežnem koraku. Izračunali smo številne numerične primere, da bi ocenili delovanje izpeljanih formulacij štirikotnih končnih elementov z vgrajeno nezveznostjo in algoritma za sledenje razpoki kot tudi delovanje metod sledenja ravnotežnih poti.
8

Étude numérique méso-macro des propriétés de transfert des bétons fissurés / Meso-macro numerical study of the transfert properties of cracked concrete

Jourdain, Xavier 15 December 2014 (has links)
La durabilité des structures en béton est désormais intégrée dans la démarche de conception des ouvrages de Génie Civil. En effet, quel que soit le type de sollicitation (mécanique, thermique, hydrique) une fissuration est susceptible de se produire risquant d'impacter la durée de vie de l'ouvrage par la pénétration d'agents agressifs. L'aptitude au service peut elle-même être affectée pour les structures où une étanchéité est requise (enceinte de confinement de centrales nucléaires, réservoirs de gaz naturel liquéfié, barrages, stockages des déchets radioactifs ou de CO2, etc.). Dans ce contexte industriel, la prédiction du débit de fuite traversant des éléments composés de matériaux à base cimentaire est donc un enjeu scientifique et industriel majeur. Pour parvenir à cet objectif de simulation numérique, il est nécessaire de mettre en place un couplage hydro-mécanique. L'anisotropie de la fissuration induite par les sollicitations mécaniques complexes conduit à un tenseur de perméabilité macroscopique anisotrope. La détermination de ce tenseur est un enjeu important dans l'objectif de mener des calculs à l'échelle macroscopique avec des modèles phénoménologiques. De plus, les calculs de perméabilité sont un moyen de comparer les volumes fissurés obtenus par les différents modèles mécaniques. La modélisation de la fissuration pour les matériaux quasi-fragiles hétérogènes à l'échelle mésoscopique tels que le béton est complexe et suivant les approches utilisées, les résultats peuvent fortement varier. C'est pourquoi l'étude numérique proposée dans la thèse comporte une comparaison entre deux approches mécaniques : - une première basée sur une modélisation mécanique de type E-FEM (Embedded Finite Element Method) [Benkemoun et al., 2010] - - une seconde basée sur une modélisation mécanique d'endommagement [Mazars, 1984] régularisée en énergie de fissuration [Hillerborg et al., 1976]. Le travail numérique associé à cette thèse consiste donc à développer un modèle couplant de manière faible un modèle mécanique à un modèle de transfert en 3D à l'échelle mésoscopique. En se basant sur le concept de « double porosité », la perméabilité du milieu fissuré est vue comme la combinaison d'une perméabilité diffuse et isotrope (liée au réseau poreux initial du béton et à son degré de saturation) et d'une perméabilité « discrète » et orientée au sein des fissures (le calcul de cette dernière étant basé sur les ouvertures de fissures données par le modèle mécanique et sur les équations de la mécanique des Navier-Stokes en régime permanent). La comparaison des résultats obtenus sur différents résultats expérimentaux issus de la littérature (un tirant traversé par de l'eau [Desmettre et Charron, 2011] et un élément structurel traversé par de l'air sec [Nahas et al., 2014]) permet de comparer la pertinence des deux modèles mécaniques utilisés ainsi que l'approche utilisée pour estimer le débit traversant des éléments en béton fissurés. / The durability of concrete structures is nowadays fully integrated in the civil engineering constructions design process. Whatever the loading is (mechanical, thermic, hydric), cracks may appear and impact the structure lifespan by the infiltration of aggressive agents. The serviceability can be directly impacted for the structures playing an air/water tightness role (containment building nuclear power plants, liquefied natural gas storage tanks, dams, radioactive waste disposal, etc.). The prediction of the flow going through elements composed of a cementitious material is therefore a major scientific and industrial issue. To achieve this goal, a hydro-mechanical coupling must be implemented. The anisotropic cracking induced by complex mechanical loadings leads to an anisotropic macroscopic permeability tensor. This tensor computation is an important issue dealing with phenomenological models for macroscopic problems. The cracking modelling of quasi-brittle materials, heterogeneous at the mesoscopic scale like concrete, is complex and different mechanical approaches can lead to various results. Therefore, permeability calculations are an elegant way to examine cracking patterns obtained with several mechanical models. Consequently, this study compares two mechanical approaches: - the first one is based on an Embedded Finite Element Method (E-FEM) mechanical model [Benkemoun et al., 2010] - - the second one is based on a damage mechanical model [Mazars, 1984] regularised by the fracture energy of the material [Hillerborg et al., 1976]. This thesis presents a hydro-mechanical approach weakly coupling a mechanical model with a permeation model in 3D at the mesoscopic scale. This work is based on the “double porosity” concept splitting the permeability into two parts: the first one is isotropic and corresponds to flows within the porosity of the material- the second one, based upon a set of cracks with different orientations and openings, is anisotropic. For the latter, each crack is a path for mass flow according to the fluid laws considering two infinite planes. In order to check this approach relevance, numerical results are compared to experimental results extracted from the literature (an experiment where water goes through a specimen made of a steel reinforcing bar covered with concrete under load [Desmettre et Charron, 2011] and a device where dry air goes through a structural element made of reinforced concrete [Nahas et al., 2014]). The computation of the flow going to those cracked concrete elements helps to understand the presented approach efficiency and the differences between the two used mechanical models.
9

Finite elements for modeling of localized failure in reinforced concrete / Éléments finis pour la modélisation de la rupture localisée dans le béton armé / Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu

Jukic, Miha 13 December 2013 (has links)
Dans ce travail, différentes formulations d'éléments de poutres sont proposées pour l'analyse à rupture de structures de type poutres ou portiques en béton armé soumises à des chargements statiques monotones. La rupture localisée des matériaux est modélisée par la méthode à discontinuité forte, qui consiste à enrichir l'interpolation standard des déplacements (ou rotations) avec des fonctions discontinues associées à un paramètre cinématique supplémentaire interprété comme un saut de déplacement (ou rotation). Ces paramètres additionnels sont locaux et condensés au niveau élémentaire. Un élément fini écrit en efforts résultants et deux éléments finis multi-couches sont développés dans ce travail. L'élément de poutre d'Euler Bernouilli écrit en effort résultant présente une discontinuité en rotation. La réponse en flexion du matériau hors discontinuité est décrite par un modèle élastoplastique en effort résultant et la relation cohésive liant moment et saut de rotation sur la rotule plastique est, quant à elle, décrite par un modèle rigide plastique. La réponse axiale est suppposée élastique. Pour ce qui concerne l'approche multi-couche, chaque couche est considérée comme une barre constituée de béton ou d'acier. La partie régulière de la déformation de chaque couche est calculée en s'appuyant sur la cinématique associée à la théorie d'Euler Bernoulli ou de Timoshenko. Une déformation axiale additionnelle est considérée par l'introduction d'une discontinuité du déplacement axial, introduite indépendamment dans chaque couche. Le comportement du béton est pris en compte par un modèle élasto-endommageable alors que celui de l'acier est décrit par un modèle élastoplastique. La relation cohésive entre la traction sur la discontinuité et le saut de déplacement axial est décrit par un modèle rigide endommageable adoucissant pour les barres (couches) en béton et rigide plastique adoucissant pour les barres en acier. La réponse en cisaillement pour l'élement de Timoshenko est supposée élastique. Enfin, l'élément multi-couche de Timoshenko est enrichi en introduisant une partie visqueuse dans la réponse adoucissante. L'implantation numérique des différents éléments développés dans ce travail est présentée en détail. La résolution par une procédure d'«operator split» est décrite pour chaque type d'élément. Les différentes quantités nécessaires pour le calcul au niveau local des variables internes des modèles non linéaires ainsi que pour la construction du système global fournissant les valeurs des dégrés de liberté sont précisées. Les performances des éléments développés sont illustrées à travers des exemples numériques montrant que la formulation basée sur un élément multicouche d'Euler Bernouilli n'est pas robuste alors les simulations s'appuyant sur des éléments d'Euler Bernouilli en efforts résultants ou sur des éléments multicouche de Timoshenko fournissent des résultats très satisfaisants. / In this work, several beam finite element formulations are proposed for failure analysis of planar reinforced concrete beams and frames under monotonic static loading. The localized failure of material is modeled by the embedded strong discontinuity concept, which enhances standard interpolation of displacement (or rotation) with a discontinuous function, associated with an additional kinematic parameter representing jump in displacement (or rotation). The new parameters are local and are condensed on the element level. One stress resultant and two multi-layer beam finite elements are derived. The stress resultant Euler-Bernoulli beam element has embedded discontinuity in rotation. Bending response of the bulk of the element is described by elasto-plastic stress resultant material model. The cohesive relation between the moment and the rotational jump at the softening hinge is described by rigid-plastic model. Axial response is elastic. In the multi-layer beam finite elements, each layer is treated as a bar, made of either concrete or steel. Regular axial strain in a layer is computed according to Euler-Bernoulli or Timoshenko beam theory. Additional axial strain is produced by embedded discontinuity in axial displacement, introduced individually in each layer. Behavior of concrete bars is described by elastodamage model, while elasto-plasticity model is used for steel bars. The cohesive relation between the stress at the discontinuity and the axial displacement jump is described by rigid-damage softening model in concrete bars and by rigid-plastic softening model in steel bars. Shear response in the Timoshenko element is elastic. Finally, the multi-layer Timoshenko beam finite element is upgraded by including viscosity in the softening model. Computer code implementation is presented in detail for the derived elements. An operator split computational procedure is presented for each formulation. The expressions, required for the local computation of inelastic internal variables and for the global computation of the degrees of freedom, are provided. Performance of the derived elements is illustrated on a set of numerical examples, which show that the multi-layer Euler-Bernoulli beam finite element is not reliable, while the stress-resultant Euler-Bernoulli beam and the multi-layer Timoshenko beam finite elements deliver satisfying results. / V disertaciji predlagamo nekaj formulacij končnih elementov za porušno analizo armiranobetonskih nosilcev in okvirjev pod monotono statično obteˇzbo. Lokalizirano porušitev materiala modeliramo z metodo vgrajene nezveznosti, pri kateri standardno interpolacijo pomikov (ali zasukov) nadgradimo z nezvezno interpolacijsko funkcijo in z dodatnim kinematičnim parametrom, ki predstavlja velikost nezveznosti v pomikih (ali zasukih). Dodatni parametri so lokalnega značaja in jih kondenziramo na nivoju elementa. Izpeljemo en rezultantni in dva večslojna končna elementa za nosilec. Rezultantni element za Euler-Bernoullijev nosilec ima vgrajeno nezveznost v zasukih. Njegov upogibni odziv opišemo z elasto-plastičnim rezultantnim materialnim modelom. Kohezivni zakon, ki povezuje moment v plastičnem členku s skokom v zasuku, opišemo s togo-plastičnim modelom mehčanja. Osni odziv je elastičen. V večslojnih končnih elementih vsak sloj obravnavamo kot betonsko ali jekleno palico. Standardno osno deformacijo v palici izračunamo v skladu z Euler-Bernoullijevo ali s Timošenkovo teorijo nosilcev. Vgrajena nezveznost v osnem pomiku povzroči dodatno osno deformacijo v posamezni palici. Obnašanje betonskega sloja opišemo z modelom elasto-poškodovanosti, za sloj armature pa uporabimo elasto-plastični model. Kohezivni zakon, ki povezuje napetost v nezveznosti s skokom v osnem pomiku, opišemo z modelom mehčanja v poškodovanosti za beton in s plastičnim modelom mehčanja za jeklo.Striˇzni odziv Timošenkovega nosilca je elastičen. Večslojni končni element za Timošenkov nosilec nadgradimo z viskoznim modelom mehčanja. Za vsak končni element predstavimo računski algoritem ter vse potrebne izraze za lokalni izračun neelastičnih notranjih spremenljivk in za globalni izračun prostostnih stopenj. Delovanje končnih elementov preizkusimo na več numeričnih primerih. Ugotovimo, da večslojni končni element za Euler-Bernoullijev nosilec ni zanesljiv, medtem ko rezultantni končni element za Euler-Bernoullijev nosilec in večslojni končni element za Timošenkov nosilec dajeta zadovoljive rezultate.

Page generated in 0.4793 seconds