• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation Stratégique et tactique en logistique urbaine / Solving strategic and tactical optimization problems in city logistics

Gianessi, Paolo 26 November 2014 (has links)
L'efficacité du transport des marchandises en ville est un sujet complexe préoccupant les autorités locales depuis de nombreuses années. Les enjeux sont immenses, une meilleure organisation du trafic devant permettre d'augmenter la sécurité, réduire les nuisances, minimiser les coûts. La Logistique Urbaine vise à concevoir des systèmes de distribution des marchandises en ville permettant d'acheminer les flux dans les meilleures conditions à la fois pour la communauté et les transporteurs. Cette thèse se deroule dans le cadre du projet ANR MODUM qui propose un système basé sur un anneau de Centres de Distribution Urbains (CDU) situés autour d'une ville. La première partie étudie ce système d'un point de vue stratégique et tactique. Le Multicommodity-Ring Location Routing Problem aborde les décisions concernants l'installation et la connexion en anneau des CDU en simplifiant les détails plus tactiques. Trois méthodes ont été developpées et testées sur un jeu d'instances exhaustif se révélant très efficaces. The Multicommodity-Ring Vehicle Routing Problem est le problème dérivé que l'on obtient quand l'anneau est fixé. Une approche de type Branch&Price est proposée pour ce problème. La deuxième partie porte sur le Vehicle Routing Problem with Intermediate Replenishment Facilities, un problème plus tactique qui se produit dans un système logistique lorsque les véhicules peuvent se recharger auprès des points de remplissage et effectuer plusieurs tournées lors d'une même journée. Plusieurs algorithmes exacts ont été developpés et testés. Les résultats obtenus sur des jeux d'instances tirés de la littérature sont prometteurs. / Urban freight transport is a matter of increasing concern in the economic, commercial, social and environmental operations of our cities, due to the constantly increasing growth and urbanization of the civilization. An improved managem ent of the traffic related to the freight transport can have a positive impact in many respects : security, congestion of the road network, noise and air pollution, costs. City Logistics studies the dynamic management of urban freight transport in order to deliver distribution systems solutions that may be suitable for both the community and freight carriers. This thesis originates from the ANR Project MODUM, which proposes a freight distribution system based on a ring of Urban Distribution Centers (UDCs) located in the outskirts of a city. In the first part, this system is studied from both a strategic and a tactical point of view. The Multicommodity-Ring Location Routing Problem (MRLRP) considers long-term decisions, i.e. the installation of the UDCs and the ring connection, without disregarding more tactical aspects. The MRLRP has been tackled by three solution methods, which proved effective on a large set of test instances. In the second part of the thesis, the Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF) is studied. The VRPIRF is a more tactical problem that arises in City Logistics each time both the multi-trip and the multi-depot features, i.e. the possibility for a vehicle to be reloaded at one of a set of facilities, are present. Several exact algorithms, namely two of type Branch&Cut and two of type Branch& Price, have been developed for this problem. computational experiments on benchmark instances taken from the literature have been conducted to assess their performance, leading to very promising results.
2

Modèles continus et "discrets" pour les problèmes de localisation et de rupture fragile et/ou ductile

Brancherie, Delphine 17 December 2003 (has links) (PDF)
L'objectif de la thèse est de développer une méthode éléments finis permettant de rendre compte de l'apparition de zones de localisation de façon indépendante du maillage. Ceci est réalisé par la construction d'éléments finis enrichis capables de reproduire des discontinuités du champ de déplacement. L'approche proposée permet la description du comportement des structures massives par la prise en compte simultanée de deux types de dissipation une dissipation volumique produite à l'échelle de la structure et prise en compte par des modèles continus classiques et une dissipation surfacique produite à l'échelle des bandes de localisation et décrite par l'introduction de champs de déplacement discontinus associés à des lois "discrètes" liant traction et saut de déplacement. Cette approche a été développée et implantée pour des modèles de plasticité (représentation de bandes de cisaillement) et pour des modèles d'endommagement (prise en compte de l'apparition de macro fissures).
3

Iterative restricted space search : a solving approach based on hybridization

Pécora, José Eduardo Junior 13 April 2018 (has links)
Face à la complexité qui caractérise les problèmes d'optimisation de grande taille l'exploration complète de l'espace des solutions devient rapidement un objectif inaccessible. En effet, à mesure que la taille des problèmes augmente, des méthodes de solution de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. Ceci a amené une grande partie de la communauté scientifique vers le développement d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes hybrides. Cependant, malgré les efforts consentis dans le développement d'approches hybrides, la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs méthodes spécifiques, en compensant les points faibles des unes par les points forts des autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre connaissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le composent. L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace restreint, ±Iterative Restricted Space Search (IRSS)>>, dont, la principale idée est la définition et l'exploration successives de régions restreintes de l'espace de solutions. Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être complètement explorées, sont appelées espaces restreints "Restricted Spaces (RS)". Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux phases algorithmiques ayant des objectifs complémentaires. La première phase consiste à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. Les concepts clés associées au développement de ce cadre conceptuel et leur validation seront introduits et validés graduellement dans cette thèse. Ils sont présentés de manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés en cours de développement et comment les solutions ont été conçues et implémentées. À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle présente les principales approches hybrides développées et leurs applications. Une brève description des approches utilisant le concept de restriction d'espace est aussi présentée dans cette partie. La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du processus d'identification des régions restreintes et des deux phases de recherche. Ces concepts sont mis en oeuvre dans un schéma hybride heuristique et méthode exacte. L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de décision, relié au contexte des pâtes et papier: "Pulp Production Scheduling Problem". La troisième partie a permit d'approfondir les concepts développés et ajuster les limitations identifiées dans la deuxième partie, en proposant une recherche itérative appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle à la méthode. Cette extension de la méthode a été testée sur un problème de localisation et d'allocation en utilisant un schéma d'hybridation heuristique-exact de manière itérative. La quatrième partie généralise les concepts préalablement développés et conçoit un cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être appliqué à une large gamme de problèmes.
4

Une métaheuristique de résolution de problèmes stochastiques de localisation-transport

Lasalle, Francis 16 April 2018 (has links)
Ce mémoire étudie un problème de localisation et de tournées de véhicules multi-périodes considérant un univers stochastique, plus connu sous l’intitulé « Problèmes Stochastiques de Localisation-Transport » (PSLT). Il est caractérisé par plusieurs modes de transport et plusieurs périodes de demandes générées par un processus stochastique et stationnaire. Nous voulons déterminer le nombre d’entrepôts requis afin de satisfaire aux demandes d’un ensemble de clients et leur localisation. De plus, la mission des entrepôts en termes du sous-ensemble de clients à servir, doit être précisée. Le problème est formulé comme un programme stochastique avec recours, et une approche heuristique et hiérarchique de résolution est proposée. Cette approche comprend une procédure de recherche Tabou, une formule approximant la longueur des routes et une procédure Clarke et Wright modifiée. Trois stratégies d’exploration dans le voisinage sont proposées et comparées entre elles sur de nombreux problèmes réalistes faisant partie d’un large plan d’expérience. / This thesis studies a Stochastic Location-Transportation Problem (SLTP) characterized by multiple transportation options, multiple demand periods and a stochastic stationary demand. We consider the determination of the number and location of the depots required to satisfy a set of customer’s demands, and the mission of these depots in terms of the subset of customers they must supply. The problem is formulated as a stochastic program with recourse, and a hierarchical heuristic solution approach is proposed. It incorporates a Tabu search procedure, an approximate route length formula, and a modified Clarke and Wright procedure. Three neighbourhood exploration strategies are proposed and compared with extensive experiments based on realistic problems.
5

Lagrangian-informed mixed integer programming reformulations

Khuong, Paul Virak 12 1900 (has links)
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques. / Integer linear programming is a robust and efficient approach to solve large-scale instances of combinatorial problems. However, problems constantly gain in complexity and sometimes impose strong constraints on computation times. We must then develop specialised methods to compute heuristic primal solutions to the problem and derive lower bounds on the optimal value, and thus prove the quality of our primal solutions. We propose to guide a reformulation approach for mixed integer programs with Lagrangian relaxations. After the identification of a strong relaxation, a mechanical process leads to a second integer formulation. This reformulation is equivalent to the initial one, but its linear relaxation is equivalent to the strong Lagrangian dual. We will show that the reformulation approach unifies and generalises prior formulations and lower bounding approaches, and that it exposes a simple mechanism to reduce the size of reformulations in return for weaker bounds. Nevertheless, our reformulations are large. We address this issue by solving their linear relaxations with specialised methods. Finally, we apply the reformulation approach to two location problems. This yields novel formulations for both problems; some are very large but, thanks to the aforementioned specialised methods, still practical.
6

Lagrangian-informed mixed integer programming reformulations

Khuong, Paul Virak 12 1900 (has links)
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques. / Integer linear programming is a robust and efficient approach to solve large-scale instances of combinatorial problems. However, problems constantly gain in complexity and sometimes impose strong constraints on computation times. We must then develop specialised methods to compute heuristic primal solutions to the problem and derive lower bounds on the optimal value, and thus prove the quality of our primal solutions. We propose to guide a reformulation approach for mixed integer programs with Lagrangian relaxations. After the identification of a strong relaxation, a mechanical process leads to a second integer formulation. This reformulation is equivalent to the initial one, but its linear relaxation is equivalent to the strong Lagrangian dual. We will show that the reformulation approach unifies and generalises prior formulations and lower bounding approaches, and that it exposes a simple mechanism to reduce the size of reformulations in return for weaker bounds. Nevertheless, our reformulations are large. We address this issue by solving their linear relaxations with specialised methods. Finally, we apply the reformulation approach to two location problems. This yields novel formulations for both problems; some are very large but, thanks to the aforementioned specialised methods, still practical.

Page generated in 0.1257 seconds