• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 8
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 79
  • 26
  • 25
  • 18
  • 18
  • 16
  • 16
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

O método de Galerkin descontínuo aplicado na investigação de um problema de elasticidade anisotrópica / The discontinuous Galerkin method applied to the investigation of an anisotropic elasticity problem

Maria do Socorro Martins Sampaio 08 July 2009 (has links)
Estuda-se o problema de equilíbrio sem força de corpo de uma esfera anisotrópica sob compressão radial uniformemente distribuída sobre o seu contorno no contexto da teoria da elasticidade linear clássica. A solução deste problema prediz o fenômeno inaceitável da auto-intersecção em uma região próxima ao centro da esfera para uma dada faixa de parâmetros materiais. Sob o contexto de uma teoria de minimização do funcional de energia potencial total da elasticidade linear clássica com a restrição de que o determinante do gradiente da função mudança de configuração seja injetivo, este fenômeno é eliminado. Aplicam-se duas formulações do Método dos Elementos Finitos de Galerkin Descontínuo (MEFGD) para obter soluções aproximadas para o problema de equilíbrio da esfera sem restrição. A primeira formulação do MEFGD aproxima diretamente os campos de deslocamento e deformação infinitesimal. A consideração do campo adicional de deformação na formulação do MEFGD aumenta o número de graus de liberdade associados aos nós da malha de elementos finitos e, consequentemente, o custo computacional. Com o objetivo de reduzir o número de graus de liberdade, introduz-se neste trabalho uma formulação alternativa do MEFGD. Nesta formulação, o campo de deformação infinitesimal não é obtido diretamente da inversão do sistema de equações resultante, mas sim por pós-processamento, a partir do campo de deslocamento aproximado. As soluções aproximadas obtidas com ambas as formulações do MEFGD são comparadas com a solução exata do problema sem restrição e com soluções aproximadas obtidas com o Método dos Elementos Finitos de Galerkin Clássico (MEFGC). Ambas as formulações do MEFGD fornecem melhores aproximações para a solução exata do que as aproximações obtidas com o MEFGC. Os erros entre a solução exata e as soluções aproximadas obtidas com a formulação alternativa do MEFGD são um pouco maiores do que os erros correspondentes obtidos com a formulação original do MEFGD. Este aumento nos erros é compensado pelo menor esforço computacional exigido pela formulação alternativa. Este trabalho serve de base para o estudo de problemas com restrição de injetividade utilizando o método de Galerkin descontínuo. / The equilibrium problem without body force of an anisotropic sphere under radial compression that is uniformly distributed on the sphere\'s boundary is investigated in the context of the classical linear elasticity theory. The solution of this problem predicts the unacceptable phenomenon of self-intersection in a vicinity of the center of the sphere for a given range of material parameters. This phenomenon can be eliminated in the context of a theory that minimizes the total potential energy of classical linear elasticity subjected to the restriction that the deformation field be injective. Two formulations of the Finite Element Method using Discontinuous Galerkin (MEFGD) are used to obtain approximate solutions for the unconstrained problem. The first formulation of the MEFGD approximates both the displacement and the strain fields. The consideration of the strain as an additional field in the formulation of the MEFGD increases the number of degrees of freedom associated to the finite elements and, therefore, the computational cost. With the objective of reducing the number of degrees of freedom, an alternative formulation of the MEFGD is introduced in this work. In this formulation, the strain field is not obtained directly from the inversion of the resulting linear system of equations, but from a post-processing calculation using the approximate displacement field. The approximate solutions obtained with both formulations of the MEFGD are compared with the exact solution of the problem without restriction and with approximate solutions obtained with the Finite Element Method using Classical Galerkin (MEFGC). Both formulations of the MEFGD yield better approximations for the exact solution than the approximations obtained with the MEFGC. The errors between the exact solution and the approximate solutions obtained with the alternative formulation of the MEFGD are slightly higher than the corresponding errors obtained with the original formulation of the MEFGD. These errors are compensated by the fact that the alternative formulation requires less computational effort than the computational effort required by the original formulation. This work serves as a basis for the study of problems with the injectivity restriction using the discontinuous Galerkin method.
52

Discontinuous Galerkin method for the solution of boundary-value problems in non-smooth domains / Discontinuous Galerkin method for the solution of boundary-value problems in non-smooth domains

Bartoš, Ondřej January 2017 (has links)
This thesis is concerned with the analysis of the finite element method and the discontinuous Galerkin method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity, if the weak solution is nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary, the nonlinearity only slows down the convergence of the function values but not the convergence of the gradient. The same analysis is carried out for approximate solutions obtained with numerical integration. The theoretical results are verified by numerical experiments. 1
53

Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues / High order discontinuous Galerkin methods for time-harmonic elastodynamics

Bonnasse-Gahot, Marie 15 December 2015 (has links)
Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage a un coût assez élevé, l'industrie pétrolière s'intéresse à des méthodes capables de reconstituer les images de la structure terrestre interne avant de le faire. La technique d'imagerie sismique la plus utilisée est la technique de sismique-réflexion qui est basée sur le modèle de l'équation d'ondes. L'imagerie sismique est un problème inverse qui requiert de résoudre un grand nombre de problèmes directs. Dans ce contexte, nous nous intéressons dans cette thèse à la résolution du problème direct en régime harmonique, soit à la résolution des équations d'Helmholtz. L'objectif principal est de proposer et de développer un nouveau type de solveur élément fini (EF) caractérisé par un opérateur discret de taille réduite (comparée à la taille des solveurs déjà existants) sans pour autant altérer la précision de la solution numérique. Nous considérons les méthodes de Galerkine discontinues (DG). Comme les méthodes DG classiques sont plus coûteuses que les méthodes EF continues si l'on considère un même problème à cause d'un grand nombre de degrés de liberté couplés, résultat des approximations discontinues, nous développons une nouvelle classe de méthode DG réduisant ce problème : la méthode DG hybride (HDG). Pour valider l'efficacité de la méthode HDG proposée, nous comparons les résultats obtenus avec ceux obtenus avec une méthode DG basée sur des flux décentrés en 2D. Comme l'industrie pétrolière s'intéresse au traitement de données réelles, nous développons ensuite la méthode HDG pour les équations élastiques d'Helmholtz 3D. / The scientific context of this thesis is seismic imaging which aims at recovering the structure of the earth. As the drilling is expensive, the petroleum industry is interested by methods able to reconstruct images of the internal structures of the earth before the drilling. The most used seismic imaging method in petroleum industry is the seismic-reflection technique which uses a wave equation model. Seismic imaging is an inverse problem which requires to solve a large number of forward problems. In this context, we are interested in this thesis in the modeling part, i.e. the resolution of the forward problem, assuming a time-harmonic regime, leading to the so-called Helmholtz equations. The main objective is to propose and develop a new finite element (FE) type solver characterized by a reduced-size discrete operator (as compared to existing such solvers) without hampering the accuracy of the numerical solution. We consider the family of discontinuous Galerkin (DG) methods. However, as classical DG methods are much more expensive than continuous FE methods when considering steady-like problems, because of an increased number of coupled degrees of freedom as a result of the discontinuity of the approximation, we develop a new form of DG method that specifically address this issue: the hybridizable DG (HDG) method. To validate the efficiency of the proposed HDG method, we compare the results that we obtain with those of a classical upwind flux-based DG method in a 2D framework. Then, as petroleum industry is interested in the treatment of real data, we develop the HDG method for the 3D elastic Helmholtz equations.
54

1D model for flow in the pulmonary airway system

Alahmadi, Eyman Salem M. January 2012 (has links)
Voluntary coughs are used as a diagnostic tool to detect lung diseases. Understanding the mechanics of a cough is therefore crucial to accurately interpreting the test results. A cough is characterised by a dynamic compression of the airways, resulting in large flow velocities and producing transient peak expiratory flows. Existing models for pulmonary flow have one or more of the following limitations: 1) they assume quasi-steady flows, 2) they assume low speed flows, 3) they assume a symmetrical branching airway system. The main objective of this thesis is to develop a model for a cough in the branching pulmonary airway system. First, the time-dependent one-dimensional equations for flow in a compliant tube is used to simulate a cough in a single airway. Using anatomical and physiological data, the tube law coupling the fluid and airway mechanics is constructed to accurately mimic the airway behaviour in its inflated and collapsed states. Next, a novel model for air flow in an airway bifurcation is constructed. The model is the first to capture successfully subcritical and supercritical flows across the bifurcation and allows for free time evolution from one case to another. The model is investigated by simulating a cough in both symmetric and asymmetric airway bifurcations. Finally, a cough model for the complete branching airway system is developed. The model takes into account the key factors involved in a cough; namely, the compliance of the lungs and the airways, the coughing effort and the sudden opening of the glottis. The reliability of the model is assessed by comparing the model predictions with previous experimental results. The model captures the main characteristics of forced expiatory flows; namely, the flow limitation phenomenon (the flow out of the lungs becomes independent of the applied expiratory effort) and the negative effort dependence phenomenon (the flow out of the lungs decreases with increasing expiratory effort). The model also gives a good qualitative agreement with the measured values of airway resistance. The location of the collapsed airway segment during forced expiration is, however, inconsistent with previous experimental results. The effect of changing the model parameters on the model predictions is therefore discussed.
55

Adaptivní hp nespojitá Galerkinova metoda pro nestacionární stlačitelné Eulerovy rovnice / Adaptivní hp nespojitá Galerkinova metoda pro nestacionární stlačitelné Eulerovy rovnice

Korous, Lukáš January 2012 (has links)
The compressible Euler equations describe the motion of compressible inviscid fluids. They are used in many areas ranging from aerospace, automotive, and nuclear engineering to chemistry, ecology, climatology, and others. Mathematically, the compressible Euler equations represent a hyperbolic system consisting of several nonlinear partial differential equations (conservation laws). These equations are solved most frequently by means of Finite Volume Methods (FVM) and low-order Finite Element Methods (FEM). However, both these approaches are lacking higher order accuracy and moreover, it is well known that conforming FEM is not the optimal tool for the discretization of first-order equations. The most promissing approach to the approximate solution of the compressible Euler equations is the discontinuous Galerkin method that combines the stability of FVM, with excellent approximation properties of higher-order FEM. The objective of this Master Thesis was to develop, implement and test new adaptive algorithms for the nonstationary compressible Euler equations based on higher-order discontinuous Galerkin (hp-DG) methods. The basis for the new methods were the discontinuous Galerkin methods and space-time adaptive hp-FEM algorithms on dynamical meshes for nonstationary second-order problems. The new algorithms...
56

Development of Space-Time Finite Element Method for Seismic Analysis of Hydraulic Structures / 農業水利施設の地震解析に向けたSpace-Time有限要素法の開発

Vikas, Sharma 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第21374号 / 農博第2298号 / 新制||農||1066(附属図書館) / 学位論文||H30||N5147(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 村上 章, 教授 藤原 正幸, 教授 渦岡 良介 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
57

A Hybrid Framework of CFD Numerical Methods and its Application to the Simulation of Underwater Explosions

Si, Nan 08 February 2022 (has links)
Underwater explosions (UNDEX) and a ship's vulnerability to them are problems of interest in early-stage ship design. A series of events occur sequentially in an UNDEX scenario in both the fluid and structural domains and these events happen over a wide range of time and spatial scales. Because of the complexity of the physics involved, it is a common practice to separate the description of UNDEX into early-time and late-time, and far-field and near-field. The research described in this dissertation is focused on the simulation of near-field and early-time UNDEX. It assembles a hybrid framework of algorithms to provide results while maintaining computational efficiency. These algorithms include Runge-Kutta, Discontinuous Galerkin, Level Set, Direct Ghost Fluid and Embedded Boundary methods. Computational fluid dynamics (CFD) solvers are developed using this framework of algorithms to demonstrate the computational methods and their ability to effectively and efficiently solve UNDEX problems. Contributions, made in the process of satisfying the objective of this research include: the derivation of eigenvectors of flux Jacobians and their application to the implementation of the slope limiter in the fluid discretization; the three-dimensional extension of Direct Ghost Fluid Method and its application to the multi-fluid treatment in UNDEX flows; the enforcement of an improved non-reflecting boundary condition and its application to UNDEX simulations; and an improvement to the projection-based embedded boundary method and its application to fluid-structure interaction simulations of UNDEX problems. / Doctor of Philosophy / Underwater explosions (UNDEX) and a ship's vulnerability to them are problems of interest in early-stage ship design. A series of events occur sequentially in an UNDEX scenario in both the fluid and structural domains and these events happen over a wide range of time and spatial scales. Because of the complexity of the physics involved, it is a common practice to separate the description of UNDEX into early-time and late-time, and far-field and near-field. The research described in this dissertation is focused on the simulation of near-field and early-time UNDEX. It assembles a hybrid framework of algorithms to provide results while maintaining computational efficiency. These algorithms include Runge-Kutta, Discontinuous Galerkin, Level Set, Direct Ghost Fluid and Embedded Boundary methods. Computational fluid dynamics (CFD) solvers are developed using this framework of algorithms to demonstrate these computational methods and their ability to effectively and efficiently solve UNDEX problems.
58

Méthode de type Galerkin discontinu en maillages multi-éléments pour la résolution numérique des équations de Maxwell instationnaires / High order non-conforming multi-element Discontinuous Galerkin method for time-domain electromagnetics

Durochat, Clément 30 January 2013 (has links)
Cette thèse porte sur l’étude d’une méthode de type Galerkin discontinu en domaine temporel (GDDT), afin de résoudre numériquement les équations de Maxwell instationnaires sur des maillages hybrides tétraédriques/hexaédriques en 3D (triangulaires/quadrangulaires en 2D) et non-conformes, que l’on note méthode GDDT-PpQk. Comme dans différents travaux déjà réalisés sur plusieurs méthodes hybrides (par exemple des combinaisons entre des méthodes Volumes Finis et Différences Finies, Éléments Finis et Différences Finies, etc.), notre objectif principal est de mailler des objets ayant une géométrie complexe à l’aide de tétraèdres, pour obtenir une précision optimale, et de mailler le reste du domaine (le vide environnant) à l’aide d’hexaèdres impliquant un gain en terme de mémoire et de temps de calcul. Dans la méthode GDDT considérée, nous utilisons des schémas de discrétisation spatiale basés sur une interpolation polynomiale nodale, d’ordre arbitraire, pour approximer le champ électromagnétique. Nous utilisons un flux centré pour approcher les intégrales de surface et un schéma d’intégration en temps de type saute-mouton d’ordre deux ou d’ordre quatre. Après avoir introduit le contexte historique et physique des équations de Maxwell, nous présentons les étapes détaillées de la méthode GDDT-PpQk. Nous réalisons ensuite une analyse de stabilité L2 théorique, en montrant que cette méthode conserve une énergie discrète et en exhibant une condition suffisante de stabilité de type CFL sur le pas de temps, ainsi que l’analyse de convergence en h (théorique également), conduisant à un estimateur d’erreur a-priori. Ensuite, nous menons une étude numérique complète en 2D (ondes TMz), pour différents cas tests, des maillages hybrides et non-conformes, et pour des milieux de propagation homogènes ou hétérogènes. Nous faisons enfin de même pour la mise en oeuvre en 3D, avec des simulations réalistes, comme par exemple la propagation d’une onde électromagnétique dans un modèle hétérogène de tête humaine. Nous montrons alors la cohérence entre les résultats mathématiques et numériques de cette méthode GDDT-PpQk, ainsi que ses apports en termes de précision et de temps de calcul. / This thesis is concerned with the study of a Discontinuous Galerkin Time-Domain method (DGTD), for the numerical resolution of the unsteady Maxwell equations on hybrid tetrahedral/hexahedral in 3D (triangular/quadrangular in 2D) and non-conforming meshes, denoted by DGTD-PpQk method. Like in several studies on various hybrid time domain methods (such as a combination of Finite Volume with Finite Difference methods, or Finite Element with Finite Difference, etc.), our general objective is to mesh objects with complex geometry by tetrahedra for high precision and mesh the surrounding space by square elements for simplicity and speed. In the discretization scheme of the DGTD method considered here, the electromagnetic field components are approximated by a high order nodal polynomial, using a centered approximation for the surface integrals. Time integration of the associated semi-discrete equations is achieved by a second or fourth order Leap-Frog scheme. After introducing the historical and physical context of Maxwell equations, we present the details of the DGTD-PpQk method. We prove the L2 stability of this method by establishing the conservation of a discrete analog of the electromagnetic energy and a sufficient CFL-like stability condition is exhibited. The theoritical convergence of the scheme is also studied, this leads to a-priori error estimate that takes into account the hybrid nature of the mesh. Afterward, we perform a complete numerical study in 2D (TMz waves), for several test problems, on hybrid and non-conforming meshes, and for homogeneous or heterogeneous media. We do the same for the 3D implementation, with more realistic simulations, for example the propagation in a heterogeneous human head model. We show the consistency between the mathematical and numerical results of this DGTD-PpQk method, and its contribution in terms of accuracy and CPU time.
59

Simulation numérique directe d'un jet en écoulement transverse à bas nombre de Mach en vue de l'amélioration du refroidissement par effusion des chambres de combustion aéronautiques / Direct numerical simulation of a jet in crossflow at low Mach number in order to improve effusion cooling for combustion chambers.

Delmas, Simon 16 December 2015 (has links)
Dans cette thèse on s'intéresse aux jets en écoulement transverse dans une configuration générique de celle du refroidissement par effusion de chambres de combustion aéronautiques. L'amélioration des modèles de paroi avec transfert de masse passe par une meilleure connaissance de l'interaction entre les jets et l’écoulement principal. Nous avons donc réalisé la simulation numérique directe d'un jet issu d'un perçage incliné avec ou sans giration, pour des écoulements isothermes, turbulents et à bas nombre de Mach, dans un contexte compressible. Pour cela nous avons travaillé avec la bibliothèque AeroSol d'éléments finis continus et discontinus sur maillage hybride. En particulier nous nous sommes intéressés à la stabilité des flux numériques pour le compressible instationnaire associés à la méthode de Galerkin discontinue lorsque le nombre de Mach tend vers zéro. Nous avons pu mettre en évidence des comportements instables lors de l'utilisation de discrétisation temporelle explicite que nous avons corrigés en proposant un nouveau flux. Dans un deuxième temps, nous avons effectué les développements nécessaires à la réalisation des calculs. Nous nous sommes en particulier intéressés à la génération d'un champ de vitesse turbulent synthétique par la méthode SEM (Synthetic Eddy Method) que nous avons implantée dans AeroSol et validée. Grâce aux outils de post-traitement développés, nous avons conduit l'analyse de nos résultats. Dans le cas sans giration, les comparaisons avec les résultats expérimentaux et les résultats de simulations RANS que nous avons obtenus en parallèle sur la configuration du banc d'essai MAVERIC sont encourageants. La structure moyenne d'ensemble du jet est notamment correctement reproduite. En ce qui concerne la cas avec giration, le comportement attendu de déflexion successive du jet dans les deux plans caractéristiques (plan d'injection et plan de l'écoulement transverse) est bien reproduit et illustre tout le potentiel prévisionnel de la librairie de calcul que nous avons contribué à développer. / In this work we are interested in jet in crossflow in a generic configuration to the one used in effusion cooling for combustion chambers. Improved wall models with mass transfer requires a better knowledge of the interaction between the jets and the main flow. We therefore carried out the direct numerical simulation of a jet issuing from an inclined hole with or without gyration, for isothermal turbulent flow at low Mach number, in a compressible context. To achieved this, we worked with the continuous and discontinuous finite element library : AeroSol on hybrid grid. In particular we studied the stability of numerical flux for the unsteady compressible flow associated with discontinuous Galerkin method when the Mach number tends to zero. We were able to demonstrate unstable behavior when using explicit time discretization and we corrected them by providing a new flux. In a second time, we have performed the necessary development to achieve the calculations. We have been especially interested in the generation of a synthetic turbulent velocity field using the SEM method (Synthetic Eddy Method) that we have implemented in aerosol and validate. Thanks to the developed post-processing tools, we have conducted an analysis of our results. In the case without gyration, comparisons with experimental results and the results of RANS simulations we obtained on the Maveric test-bench configuration are encouraging. The mean flow of the jet is correctly reproduced. In the case with gyration, the expected behavior of successive deflection of the jet in both planes (injection plane and transverse plane of the flow) is reproduced and shows all the potential of the AeroSol library we helped to develop.
60

Méthodes isogéométriques pour les équations aux dérivées partielles hyperboliques / Isogeometric methods for hyperbolic partial differential equations

Gdhami, Asma 17 December 2018 (has links)
L’Analyse isogéométrique (AIG) est une méthode innovante de résolution numérique des équations différentielles, proposée à l’origine par Thomas Hughes, Austin Cottrell et Yuri Bazilevs en 2005. Cette technique de discrétisation est une généralisation de l’analyse par éléments finis classiques (AEF), conçue pour intégrer la conception assistée par ordinateur (CAO), afin de combler l’écart entre la description géométrique et l’analyse des problèmes d’ingénierie. Ceci est réalisé en utilisant des B-splines ou des B-splines rationnelles non uniformes (NURBS), pour la description des géométries ainsi que pour la représentation de champs de solutions inconnus.L’objet de cette thèse est d’étudier la méthode isogéométrique dans le contexte des problèmes hyperboliques en utilisant les fonctions B-splines comme fonctions de base. Nous proposons également une méthode combinant l’AIG avec la méthode de Galerkin discontinue (GD) pour résoudre les problèmes hyperboliques. Plus précisément, la méthodologie de GD est adoptée à travers les interfaces de patches, tandis que l’AIG traditionnelle est utilisée dans chaque patch. Notre méthode tire parti de la méthode de l’AIG et la méthode de GD.Les résultats numériques sont présentés jusqu’à l’ordre polynomial p= 4 à la fois pour une méthode deGalerkin continue et discontinue. Ces résultats numériques sont comparés pour un ensemble de problèmes de complexité croissante en 1D et 2D. / Isogeometric Analysis (IGA) is a modern strategy for numerical solution of partial differential equations, originally proposed by Thomas Hughes, Austin Cottrell and Yuri Bazilevs in 2005. This discretization technique is a generalization of classical finite element analysis (FEA), designed to integrate Computer Aided Design (CAD) and FEA, to close the gap between the geometrical description and the analysis of engineering problems. This is achieved by using B-splines or non-uniform rational B-splines (NURBS), for the description of geometries as well as for the representation of unknown solution fields.The purpose of this thesis is to study isogeometric methods in the context of hyperbolic problems usingB-splines as basis functions. We also propose a method that combines IGA with the discontinuous Galerkin(DG)method for solving hyperbolic problems. More precisely, DG methodology is adopted across the patchinterfaces, while the traditional IGA is employed within each patch. The proposed method takes advantageof both IGA and the DG method.Numerical results are presented up to polynomial order p= 4 both for a continuous and discontinuousGalerkin method. These numerical results are compared for a range of problems of increasing complexity,in 1D and 2D.

Page generated in 0.1182 seconds