1 |
Evolution of Spur Length in a Moth-pollinated OrchidBoberg, Elin January 2010 (has links)
There is considerable evidence that pollinator shifts can explain many differences in flower morphology between closely related plant species, but the extent to which pollinator shifts can explain the maintenance of among-population variation in floral traits within species is poorly known. In this thesis, I combined comparative and experimental approaches to examine the evolution of floral traits in the moth-pollinated orchid Platanthera bifolia. More specifically, I investigated (1) the relationship between flower and pollinator morphology, (2) phenotypic selection on morphology and phenology in populations in contrasting environments, (3) components of prezygotic reproductive isolation among divergent populations, and (4) the adaptive and functional significance of two correlated floral traits. A study of Scandinavian of P. bifolia populations revealed that spur length was positively correlated with proboscis length of local pollinators, which suggests that variation in spur length reflects adaptive evolution in response to geographically variable pollinator-mediated selection. A phenotypic selection study on Öland, SE Sweden, suggested that disruptive selection on spur length contributes to the maintenance of a bimodal distribution of spur length in mixed habitats, but provided very limited evidence of divergent selection on plant morphology and flowering phenology in grassland and woodland habitats. Field experiments revealed strong reproductive isolation between divergent populations on Öland, due to differences in spatial distribution, flowering phenology, and pollinators, and among-population incompatibility. The results suggest that prezygotic reproductive isolation contributes to the maintenance of population differentiation in floral traits in P. bifolia. A field manipulation experiment demonstrated that spur length but not perianth size affects pollination success and seed production. This suggests that among-population differentiation in perianth size may be the result of a genetic correlation with spur length. Taken together, the results of this thesis suggest that pollinator-mediated selection can shape the evolution of intraspecific floral variation.
|
2 |
Consequences of the Domestication of Man’s Best Friend, The DogBjörnerfeldt, Susanne January 2007 (has links)
The dog was the first animal to be domesticated and the process started at least 15 000 years ago. Today it is the most morphologically diverse mammal, with a huge variation in size and shape. Dogs have always been useful to humans in several ways, from being a food source, hunting companion, guard, social companion and lately also a model for scientific research. This thesis describes some of the changes that have occurred in the dog’s genome, both during the domestication process and later through breed creation. To give a more comprehensive view, three genetic systems were studied: maternally inherited mitochondrial DNA, paternally inherited Y chromosome and biparental autosomal chromosomes. I also sequenced complete mitochondrial genomes to view the effect new living conditions might have had on dogs’ genes after domestication. Finally, knowledge of the genetic structure in purebred dogs was used to test analytic methods usable in other species or in natural populations where little information is available. The domestication process appears to have caused a relaxation of the selective constraint in the mitochondrial genome, leading to a faster rate of accumulation of nonsynonymous changes in the mitochondrial genes. Later, the process of breed creation resulted in genetically separated breed groups. Breeds are a result from an unequal contribution of males and females with only a few popular sires contributing and a larger amount of dams. However, modern breeder preferences might lead to disruptive selective forces within breeds, which can result in additional fragmentation of breeds. The increase in linkage disequilibrium that this represents increases the value of purebred dogs as model organisms for the identification and mapping of diseases and traits. Purebred dogs’ potential for these kinds of studies will probably increase the more we know about the dog’s genome.
|
3 |
Variation in female mate preference for a male trait that provides information about growth rate in the swordtail Xiphophorus multilineatusKleinas, Nicole L. 27 August 2015 (has links)
No description available.
|
4 |
Role genetické variance ve speciaci / Role of genetic variance in speciationPayne, Pavel January 2011 (has links)
Sympatric speciation has received much attention both empirically and theoretically. However, the contribution of sympatric speciation to biodiversity remains unclear. One piece missing from the speciation puzzle is the plausibility of sympatric ecological divergence of species through adaptation in polygenic traits. I consider an environment consisting of two niches, where one value of the trait is advantageous in only one niche, and vice versa. The selection regime is described by a trade-off in viabilities between the niches. These polygenic traits can, and often do, involve epistatic interactions among and between loci, so that the contribution of the alleles to viability deviates from additivity. Epistasis then also affects the curvature of the trade-offs: predominant less-than-additive epistasis turns the curve towards concavity and predominant more-than-additive towards convexity. The curvature of the trade-off plays a crucial role in the evolution of populations. With a convex trade- off, extreme values of the trait are favored and the population tends to diverge, but relatively stringent symmetry in strength of selection within the niches and the niche proportions is necessary to maintain polymorphism. In this study I use two and three- locus haploid versions of Levene's model to...
|
Page generated in 0.3913 seconds