• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 34
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 122
  • 80
  • 48
  • 47
  • 32
  • 31
  • 29
  • 27
  • 25
  • 25
  • 23
  • 23
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Dissimilar Metal Joining in the Medical Device Industry

Sorensen, Daniel David 31 October 2017 (has links)
No description available.
52

Induction Bending of Internally Clad Steel Pipes: Failure Mechanisms & Processing Parameter Optimization in Ni-base Alloy Weld Overlays

Alexandre, Rex T. January 2016 (has links)
No description available.
53

Joining of Shape-Memory NiTi Torque Tubes to Structural Materials

Fox, Gordon R. 19 June 2012 (has links)
No description available.
54

Microstructure Development During Laser And Electron Beam Welding Of Ti/Ni Dissimilar Joints

Chatterjee, Subhradeep 07 1900 (has links)
Fusion welding of dissimilar metals constitutes a crucial processing stage in a variety of applications, and the use of high energy beams (HEB) like lasers and electron beams for such welding applications has several advantages, such as, precision, narrow heat affected zone, and consequently, low distortion. An understanding of microstructural evolution in the weld is a prerequisite for producing sound joints with desired properties. HEB welding of similar metals have been studied extensively. In contrast, fewer studies have been directed toward understanding the fundamental aspects of solidification of dissimilar welds. This thesis presents an effort in that direction by exploring microstructural evolution in Ti/Ni dissimilar welds. Welding of Ti/Ni serves to illustrate the fundamental differences that distinguish dissimilar welding from the welding of similar metals. These are: (i) Thermophysical properties of the base metals are, in general, different, and this can have important consequences in the heat transfer conditions. (ii) Composition can vary over an wide range, the extreme being for the case of a pure binary couple, and the solid–liquid interface cannot be defined by a single liquidus isotherm. (iii) In addition to the surface energy driven Marangoni convection, a strong solutal convection can arise due to a large difference in the density of the base metals. (iv) Nucleation of phases assumes greater importance, especially in systems with intermediate phases. We have carried out laser and electron beam welding (LW and EBW) experiments in a butt welding geometry to join Ti/Ni dissimilar couples. Weld microstructures were characterised using scanning and transmission electron microscopy (SEM and TEM); composition information was obtained from energy dispersive spectroscopy (EDS) of Xrays in the SEM. In addition to the pure binary couple, we have also studied electron beam welding of Ti/Ni with a thin Ta interlayer. We summarise our findings in each set of experiments in the following sections. Laser welding of Ti/Ni We have studied partial penetration welds obtained within the range of experimental parameters used in our study. These welds show the following interesting features: 1. The welds are asymmetric with respect to the initial joint. Despite its higher melting point, Ti melts more than Ni due to its lower thermal diffusivity, making the average composition of the weld richer in Ti (Ti–40at.%Ni). 2. Composition changes very steeply near the fusion interfaces in both Ti and Ni with associated microstructural changes. The variation is of much lesser magnitude in the rest of the weld, reflecting a well mixed melt pool on a macroscopic scale. 3. Growth of base metal grains into the weld pool at the fusion interfaces is severely restricted at both Ti and Ni ends. 4. The Ti fusion interface is marked by a band consisting of Ti2Ni dendrites which grow toward the Ti base metal. 5. Layered structures form at the Ni fusion interface. The sequence of the layers is: solid solution (Ni)→ Ni3Ti→ Ni3Ti+NiTi eutectic → NiTi. We note the absence of the (Ni)+Ni3Ti eutectic in this sequence. 6. NiTi and Ti2Ni are the major phases that appear in the bulk of the weld. Volume fraction and morphology of NiTi vary almost periodically to form microstructural bands. 7. Solid state transformation of NiTi results in the formation of the Rphase and martensite, which reflect the composition heterogeneity in the weld. Sometimes, Ni4Ti3 precipitates are observed also, providing indirect evidence of nonequilibrium solidification. 8. Nitrogen pickup from the atmosphere during welding leads to the formation titanium nitride dendrites in the weld. 9. Solutal convection and buoyancy forces manifest themselves through the segregation of the lighter nitride and Ti2Ni phases toward the top surface of the weld; the heavier liquid forms blocky NiTi in the bottom half of the weld. These observations stand in striking contrast with the microstructures of conventional welds. We have proposed a set of composition and temperature profiles in the weld which reflect the diffusive and advective transport processes; when combined with thermodynamic information from the Ti–Ni phase diagram to yield spatial liquidus temperature profiles, these profiles can adequately explain most of the results. Our observations illustrate the importance of (a) nucleation, and (b) the inhomogeneous nature of the melt in which growth takes place. They also highlight the role of convective currents in bringing about local fluctuations in composition and temperature leading to ‘low velocity bands’. Electron beam welding of Ti/Ni We have carried out full penetration EBW of thin plates of Ti and Ni. The major observations are: (i) Average composition of the weld is in the Ni–rich side of the phase diagram (Ni–40at.%Ti). (ii) Fusion interface microstructures are very similar to that in LW exhibiting restricted base metal growth (although little amount of epitaxy can be seen in the Ni side), growth of Ti2Ni dendrites toward the base metal at the Ti fusion interface and the sequence of layers at the Ni interface: (Ni)→ Ni3Ti→ Ni3Ti+NiTi. Unlike LW, however, Ni3Ti, instead of NiTi, reappeared after the third layer on the Ni side. (iii) General microstructure consists of the Ni3Ti+NiTi eutectic, which appears in several anomalous as well as regular morphologies. (iv) Formation of NiTi is restricted mostly to regions near the Ti fusion interface. (v) Segregation of Ni3Ti was observed in a few places. The most prominent change in the microstructure compared to LW is a shift from the Ti2Ni– NiTi phases in the bulk of the weld to a Ni3Ti+NiTi eutectic structure. This is a direct consequence of the shift in the average composition of the weld to the Ni– rich side. The occurrence of different anomalous and regular eutectic structures bear similarity with bulk undercooling experiments conducted on eutectic systems having a strongly faceting phase as one of its constituents. The asymmetric coupled zone, along with composition and temperature fluctuation due to fluid flow, can be attributed to the origin of these structures. Electron beam welding of Ti/Ni with a Ta interlayer Motivated by the report of superior mechanical properties of Ti/Ni welds with an interlayer of Ta, whose melting point is much higher than those Ni and Ti, we performed EBW experiments using a Ni–Ta– Ti configuration. The key observations are: (i) The process is inherently unsteady in nature, and results in partial and irregular melting of the Ta interlayer. This partial melting essentially divides the weld into Ni–rich and Ti–rich halves. (ii) Microstructure near the fusion interface in Ni and Ti show similarities with that of the pure binary Ti/Ni welds; the phases here, however, contain Ta as a ternary addition. (iii) Microstructure in the Ti–rich half consists of dendrites of the Ni(Ti,Ta) phase with a high Ti:Ta ratio, and an eutectic formed between this phase and a (Ti,Ta)2Ni phase having significant amount of Ta. Two Ni(Ti,Ta) type phases dominate the microstructure in the Ni–rich half: the phase having a higher Ti:Ta ratio forms cells and dendrites, whereas the one of a lower Ti:Ta ratio creates an interdendritic network. (iv) Regions near the unmolten Ta layer in the middle show the formation of a sawtoothlike Ta–rich faceted phase of composition (Ta,Ti)3Ni2. Since very scarce thermodynamic data exist for the Ni–Ta–Ti ternary system, we have taken cues from the binary phase diagrams to understand the microstructural evolution. Such extrapolation, although successful to some extent, fails where phases which have no binary equivalents start to appear. In summary, in this thesis, we explore microstructural evolution in the Ti/Ni dissimilar welds under the different settings of laser and electron beam welding processes. This study reveals a variety of phenomena occurring during dissimilar welding which lead to the formation of an extensive range of microstructural features. Although a few questions do remain, most results can be rationalised by drawing from, and extending the knowledge gained from previous studies by introducing physical and thermodynamic arguments.
55

Compressible Mixing of Dissimilar Gases

Javed, Afroz January 2013 (has links) (PDF)
This thesis is concerned with the study of parallel mixing of two dissimilar gases under compressible conditions in the confined environment. A number of numerical studies are reported in the literature for the compressible mixing of two streams of gases where (1) both the streams are of similar gases at the same temperatures, (2) both the streams are at different temperatures with similar gases, and (3) dissimilar gases are with nearly equal temperatures. The combination of dissimilar gases at large temperature difference, mixing under compressible conditions, as in the case of scramjet propulsion, has not been adequately addressed numerically. Also many of the earlier studies have used two dimensional numerical simulation and showed good match with the experimental results on mixing layers that are inherently three dimensional in nature. In the present study, both two-dimensional (2-d) and three dimensional (3-d) studies are reported and in particular the effect of side wall on the three dimensionality of the flow field is analyzed, and the reasons of the good match of two dimensional simulations with experimental results have been discussed. Both two dimensional and three dimensional model free simulations have been conducted for a flow configuration on which experimental results are available. In this flow configuration, the mixing duct has a rectangular cross section with height to width ratio of 0.5. In the upper part of the duct hydrogen gas at a temperature of 103 K is injected through a single manifold of two Ludweig tubes and in the lower part of the duct nitrogen gas at a temperature of 2436 K is supplied through an expansion tube, both the gases are at Mach numbers of 3.1 and 4.0 respectively. Measurements in the experiment are limited to wall pressures and heat flux. The choice of this experimental condition gives an opportunity to study the effect of large temperature difference on the mixing of two dissimilar gases with large molecular weights under compressible conditions. Both two dimensional and three dimensional model free simulations are carried out using higher order numerical scheme (4th order spatial and 2nd order temporal) to understand the structure and evolution of supersonic confined mixing layer of similar and dissimilar gases. Two dimensional simulations are carried out by both SPARK (finite difference method) and OpenFOAM (finite volume method based open source software that was specially picked out and put together), while 3D model free simulations are carried out by OpenFOAM. A fine grid structure with higher grid resolution near the walls and shear layer is chosen. The effect of forcing of fluctuations on the inlet velocity shows no appreciable change in the fully developed turbulent region of the flow. The flow variables are averaged after the attainment of statistical steady state established through monitoring the concentration of inert species introduced in the initial guess. The effect of side wall on the flow structure on the mixing layer is studied by comparing the simulation results with and without side wall. Two dimensional simulations show a good match for the growth rate of shear layer and experimental wall pressures. Three dimensional simulations without side wall shows 14% higher growth rate of shear layer than that of two dimensional simulations. The wall pressures predicted by these three dimensional simulations are also lower than that predicted using two dimensional simulations (6%) and experimental (9%) results in the downstream direction of the mixing duct. Three dimensionality of the flow is thought of as a cause for these differences. Simulations with the presence of side wall show that there is no remarkable difference of three dimensionality of the flow in terms of the variables and turbulence statistics compared to the case without side walls. However, the growth rate of shear layer and wall surface pressures matches well with that predicted using two dimensional simulations. It has been argued that this good match in shear layer growth rate occurs due to formation of oblique disturbances in presence of side walls that are considered responsible for the decrease in growth rate in 3-d mixing layers. The wall pressure match is argued to be good because of hindrance from side wall in the distribution of momentum in third direction results in higher wall pressure. The effect of dissimilar gases at large temperature difference on the growth rate reduction in compressible conditions is studied. Taking experimental conditions as baseline case, simulations are carried out for a range of convective Mach numbers. Simulations are also carried out for the same range of convective Mach numbers considering the mixing of similar gases at the same temperature. The normalized growth rates with incompressible counterpart for both the cases show that the dissimilar gas combination with large temperature difference shows higher growth rate. This result confirms earlier stability analysis that predicts increased growth rate for such cases. The growth rate reduction of a compressible mixing layer is argued to occur due to reduced pressure strain term in the Reynolds stress equation. This reduction also requires the pressure and density fluctuation correlation to be very near to unity. This holds good for a mixing layer formed between two similar gases at same temperature. For dissimilar gases at different temperatures this assumption does not hold well, and pressure-density correlation coefficient shows departure from unity. Further analysis of temperature density correlation factor, and temperature fluctuations shows that the changes in density occur predominantly due to temperature effects, than due to pressure effects. The mechanism of density variations is found to be different for similar and dissimilar gases, while for similar gases the density variations are due to pressure variations. For dissimilar gases density variation is also affected by temperature variations in addition to pressure variations. It has been observed that the traditional k-ε turbulence model within the RANS (Reynolds Averaged Navier Stokes) framework fails to capture the growth rate reduction for compressible shear layers. The performance of k-ε turbulence model is tested for the mixing of dissimilar gases at large temperature difference. For the experimental test case the shear layer growth rate and wall pressures show good match with other model free simulations. Simulations are further carried out for a range of convective Mach numbers keeping the mixing gases and their temperatures same. It has been observed that a drop in the growth rate is well predicted by RANS simulations. Further, the compressibility option has been removed and it has been observed that for the density and temperature difference, even for incompressible case, the drop in growth rate exists. This behaviour shows that the decrease in growth rate is mainly due to the interaction of temperature and species mass fraction on density. Also it can be inferred that RANS with k-ε turbulence model is able to capture the compressible shear layer growth rate for dissimilar gases at high temperature difference. The mixing of heat and species is governed by the values of turbulent Prandtl and Schmidt numbers respectively. These numbers have been observed to vary for different flow conditions, while affecting the flow field considerable in the form of temperature and species distribution. Model free simulations are carried out on an incompressible convective Mach number mixing layer, and the results are compared with that of a compressible mixing layer to study the effect of compressibility on the values of turbulent Prandtl / Schmidt numbers. It has been observed that both turbulent Prandtl and Schmidt numbers show an almost constant value in the mixing layer region for incompressible case. While, for a compressible case, both turbulent Prandtl and Schmidt numbers show a continuous variation within the mixing layer. However, the turbulent Lewis number is observed to be near unity for both incompressible and compressible cases. The thesis is composed of 8 chapters. An introduction of the subject with critical and relevant literature survey is presented in chapter 1. Chapter 2 describes the mathematical formulation and assumptions along with solution methodology needed for the simulations. Chapter 3 deals with the two and three dimensional model free simulations of the non reacting mixing layer. The effect of the presence of side wall is studied in chapter 4. Chapter 5 deals with the effect of compressibility on the mixing of two dissimilar gases at largely different temperatures. The performance of k-ε turbulence model is checked for dissimilar gases in Chapter 6. Chapter 7 is concerned with the effect of compressibility on turbulent Prandtl and Schmidt numbers. Finally concluding remarks are presented in chapter 8. The main aim of this thesis is the exploration of parallel mixing of dissimilar gases under compressible conditions for both two and three dimensional cases. The outcome of the thesis is (a) a finding that the presence of sidewall in a mixing duct does not make flow field two dimensional, instead it causes the formation of oblique disturbances and the shear layer growth rate is reduced, (b) that it has been shown that the growth rates of dissimilar gases are affected far more by large temperature difference than by compressibility as in case of similar gases, (c) that the growth rates of compressible shear layers formed between dissimilar gases are better predicted using k-εturbulence model and (d) that for compressible mixing conditions the turbulent Prandtl and Schmidt numbers vary continuously in the mixing layer region necessitating the use of some kind of model instead of assuming constant values.
56

Micro-Mechanisms Associated with Friction Stir Welding of Aluminum with Titanium

Kar, Amlan January 2016 (has links) (PDF)
Out of the known aerospace metal and alloys, Aluminium (Al) and Titanium (Ti) are important due to their unique combination of properties, such as strength, ductility and corrosion resistance etc. For these reasons, welding of these two materials, especially in the butt and lap configuration, has a significant impact for structural applications. However, welding of Al to Ti is a challenge due to wide differences in their physical properties and properties of the brittle intermetallic that are formed. Such problems in Ti-Al weld can be minimized if the temperature of welding is reduced. Therefore, many solid-state welding processes have been introduced for this system in the past few decades. Amongst these processes, Friction Stir Welding (FSW) is among the most appropriate for dissimilar materials in the butt and lap configuration, as this process involves lower temperature of processing. The present thesis is an attempt to address the issues pertaining to the friction stir welding of commercially pure Al and Ti. Though these commercially pure materials are seldom used in actual applications, where alloys such as Ti-6Al-4V and Al 2219 (and their variants) are used, this work is done to get a fundamental understanding of the underlying mechanisms during Friction Stir Welding (FSW). The study has been extended to the effect of using a thin strip of other metallic materials between Al and Ti. These inserts are likely to play a role in the formation of intermetallic and control the after effects of the formation of these intermetallic. Two metals have been chosen for this purpose, namely Zinc (Zn) and Niobium (Nb). The thesis has 8 chapters that attempts to systematically understand the process of FSW of cp-Al to cp-Ti. In Chapter 1 of the thesis, the FSW process is introduced with an emphasis on important parameters that control the welding process. In addition, a brief introduction of Al-Ti binary system is also given. Literature related to conventional solid state welding processes and friction stir welding process is presented in Chapter 2. In this chapter, previous works on the FSW of various materials is reviewed, with more emphasis on welding of aluminium to titanium. At the end of the chapter the scope and motivation of the present investigation has been outlined Chapter 3 includes the experimental details involved in the present study. In addition to the details of the processes and various characterization techniques used in the present investigation, the basic principles involved in various techniques, names as X-ray tomography, Scanning Electron Microscopy (SEM) with Electron Back-Scattered Diffraction (EBSD), X-Ray Diffraction (XRD) and Electron Probe Micro-Analysis (EPMA) have also been given. Micro-hardness and tensile tests results are also reported in this chapter. A detailed study on FSW of Al and Ti is presented in chapter 4 of the thesis. The effect of process parameters on the evolution of microstructure and mechanical properties has been reported. A bottom-up approach on experimentally determining the “process window” is presented. The results emphasises on the distribution of titanium fragments and intermetallic particles in the nugget zone and their influence on mechanical properties of the weld. The microstructural evolution in the matrix is also detailed. The most noteworthy observation is substantial grain refinement in the nugget zone due to the presence of fine fragments of titanium and intermetallic. Cross-tensile tests of the samples welded under the optimised conditions fail in the retreating side of the aluminium material and has strength more than the parent material. The last section in this chapter deals with thermal stability of the microstructures. Chapter 5 deals with the use of Zn as interlayer between Al and Ti. The microstructural evolution and its effect on the mechanical properties have been examined. The investigations clearly show that FSW of Al and Ti with Zn interlayer has superior mechanical properties compared to Al-Ti welds without interlayer. The resulting microstructure has a better thermal stability. The use of Nb as interlayer has been studied in chapter 6. The microstructural investigation of the nugget zone reveals that Nb interlayer does not readily form solid solution with any of the base materials and Nb gets distributed more heterogeneously compared to Ti itself. This has led to a reduction in the strength of the weld, however, the ductility increases The thermal stability of the microstructure is poor compared to FSW of Al to Ti with Zn interlayer. In chapter 7, salient features of the different micro-mechanism operating during FSW of the investigated combinations has been discussed in detail. Finally, the outcome of the thesis has been summarized and scope for future investigation is outlined in chapter 8.
57

Friction Bit Joining of Dissimilar Combinations of Advanced High-Strength Steel and Aluminum Alloys

Squires, Lile P. 10 June 2014 (has links) (PDF)
Friction bit joining (FBJ) is a new method that enables lightweight metal to be joined to advanced high-strength steels. Weight reduction through the use of advanced high-strength materials is necessary in the automotive industry, as well as other markets, where weight savings are increasingly emphasized in pursuit of fuel efficiency. The purpose of this research is twofold: (1) to understand the influence that process parameters such as bit design, material type and machine commands have on the consistency and strength of friction bit joints in dissimilar metal alloys; and (2) to pioneer machine and bit configurations that would aid commercial, automated application of the system. Rotary broaching was established as an effective bit production method, pointing towards cold heading and other forming methods in commercial production. Bit hardness equal to the base material was found to be highly critical for strong welds. Bit geometry was found to contribute significantly as well, with weld strength increasing with larger bit shaft diameter. Solid bit heads are also desirable from both a metallurgical and industry standpoint. Cutting features are necessary for flat welds and allow multiple material types to be joined to advanced high-strength steel. Parameters for driving the bit were established and relationships identified. Greater surface area of contact between the bit and the driver was shown to aid in weld consistency. Microstructure changes resulting from the weld process were characterized and showed a transition zone between the bit head and the bit shaft where bit hardness was significantly increased. This zone is frequently the location of fracture modes. Fatigue testing showed the ability of FBJ to resist constant stress cycles, with the joined aluminum failing prior to the FBJ fusion bond in all cases. Corrosion testing established the use of adhesive to be an effective method for reducing galvanic corrosion and also for protecting the weld from oxidation reactions.
58

Dissimilar joining of aluminium to ultra-high strength steels by friction stir welding

Ratanathavorn, Wallop January 2017 (has links)
Multi-material structures are increasingly used in vehicle bodies to reduce weight of cars. The use of these lightweight structures is driven by requirements to improve fuel economy and reduce CO2 emissions. The automotive industry has replaced conventional steel components by lighter metals such as aluminium alloy. This is done together with cutting weight of structures using more advanced strength steels. However, sound joining is still difficult to achieve due to differences in chemical and thermal properties.   This research aims to develop a new innovative welding technique for joining aluminium alloy to ultra-high strength steels. The technique is based on friction stir welding process while the non-consumable tool is made of an ordinary tool steel. Welding was done by penetrating the rotating tool from the aluminium side without penetrating into the steel surface. One grade of Al-Mg aluminium alloy was welded to ultra-high strength steels under lap joint configuration. Different types of steel surface coatings including uncoated, hot-dipped galvanised and electrogalvanised coating have been studied in order to investigate the influence of zinc on the joint properties. The correlation among welding parameters, microstructures, intermetallic formation and mechanical properties are demonstrated in this thesis.  Results have shown that friction stir welding can deliver fully strong joints between aluminium alloy and ultra-high strength steels. Two intermetallic phases, Al5Fe2 and Al13Fe4, were formed at the interface of Al to Fe regardless of surface coating conditions. The presence of zinc can improve joint strength especially at low heat input welding due to an increased atomic bonding at Al-Fe interface. The formation of intermetallic phases as well as their characteristics has been demonstrated in this thesis. The proposed welding mechanisms are given based on metallography investigations and related literature. / <p>QC 20170519</p>
59

Transient liquid phase bonding of dissimilar single crystal superalloys

Olatunji, Oluwadamilola 05 December 2016 (has links)
Transient liquid phase (TLP) bonding has proven to be the preferred method for joining extremely difficult-to-weld advanced materials, including similar and dissimilar superalloys. In this work, an approach that combines experiments and theoretical simulations are used to investigate the effect of temperature gradient (TG) in a vacuum furnace on the temperature distribution in TLP bonded samples. When joining similar materials by this technique, the simulated results with experimental verifications show that, irrespective of where the samples are placed inside the vacuum furnace, a TG in the furnace can translate into a symmetric temperature distribution in bonded samples provided the diffusion direction is parallel to the source of heat emission. In addition, the effects of TLP bonding parameters on the joint microstructure were investigated during the joining of nickel-based IN738 and CMSX-4 single crystal (SX) superalloys. An increase in holding time and reduction in gap size reduces the width of eutectic product that forms within the joint region. It was also found that Liquid-state diffusion (LSD) can occur and have significant effects on the microstructure of dissimilar TLP bonded joints even though its influence is often ignored during TLP bonding. The occurrence of LSD produced single crystal joint when a SX and polycrystal substrate were bonded. This formation of a SX joint which cannot be exclusively produced by solid-state diffusion has not been previously reported in the literature. / February 2017
60

Toward a Production Ready FBJ Process for Joining Dissimilar Combinations of GADP 1180 Steel and AA 7085-T76

Shirley, Kevin Alexander 01 March 2018 (has links)
Friction Bit Joining (FBJ) is a new technology that can be used to join dissimilar materials together. This ability makes it a good candidate for creating light weight structures for the automotive industry by combining lightweight materials such as aluminum to stronger materials like advanced high-strength steels. The automotive industry and many other industries have great interest in reducing structure weight to increase fuel efficiency. The purpose of this research is to make FBJ of GADP 1180 to AA 7085-T76 a production ready process by (1) better understanding the effects of process parameters, bit design and tool design on joint strength and reliability especially as they relate to different joint configurations; (2) determining if consecutive FBJ joints on a part will be additive in strength; (3) improving surface finish for better coating adhesion so that joints can be made to withstand extended corrosion testing; and (4) determining the failure modes and fatigue life of joint components at high and low load amplitudes. No universal parameter set for optimizing peak load for T-peel, cross tension, and lap-shear tension configurations were found. Due to the extreme load conditions of T-peel and the smaller margin of safety it is better to optimize for T-peel. However, strength and reliability were still improved across the board. Cutting features and tapered shanks were found to not always be necessary. Removing cutting features from the bit design increased peak weld cycle loads, but a stiffer machine can overcome this. Consecutive FBJ joints on a part are mostly additive in nature. When the weakest joint fails, its load is distributed to the remaining joints and will limit the peak load of the whole part. If all joints are "good" then the peak load will be approximately additive. Most of the stress is localized on the side of the bit opposite of the pulling direction. Failure modes in lap-shear tend to change from weld nugget pullouts in single weld specimens to aluminum material failures in multi-weld specimens. This is because of the added stiffness that additional material and welds provide to resist coupons bending and creating a peeling action. Surface finish was improved by development of a floating carbide cutting system which cut aluminum flash as it was generated around the head of the bit. A new internal drive design provided the ability to drive bits flush with the aluminum top layer if desired with minimal reductions in strength. Flush bits provided benefits in safety, cosmetics, and coating adhesion.

Page generated in 0.1686 seconds