• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 25
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distinct Element Modeling of the Shimizu Tunnel No.3 in Japan

Vardakos, Sotirios 22 December 2003 (has links)
In the present research a highway twin tunnel project completed in Japan in 1998 is used as a case study to verify results of numerical analyses with measurement data. Each of the tunnels had approximately 1.1 km of length. For this project a wide geometry of approximately 18.0 m was selected by the designers to facilitate three lanes per tunnel. A sequential tunneling technique known in Japan as the "TBM pilot and enlargement method" was used along with NATM principles. The tunnel was used as a reference project, involving performance testing and extensive monitoring in order to verify and standardize support requirements for other tunnels excavated under similar geologic conditions in the Tomei II expressway. The tunnel was excavated in a region consisting mainly of soft sedimentary rocks, such as locally weathered sandstone, underlain by interbedded sandstone and mudstone. Due to observed non symmetric deformations and loads in the tunnel, the distinct element and the convergence-confinement methods were used during the numerical simulations. A parametric analysis was performed initially in a pseudo-continuum approach to study the behavior of the wide tunnel geometry under various conditions. The effects of rock mass elastic modulus, in situ Ko ratio and boundary conditions are discussed. More complex parametric studies were performed in a stochastically generated model by using joint spatial data from geotechnical investigations. The Barton-Bandis constitutive law was assumed for the behavior of the joints. The sensitivity of the ground "characteristic curves" was examined by statistical variation of the joint shear strength parameters. A final simulation using the code UDEC and the convergence-confinement method yields interesting results which are comparable to the monitored data. / Master of Science
2

Numerical simulation of comminution in granular materials with an application to fault gouge evolution

Lang, Richard Anthony 30 September 2004 (has links)
The majority of faults display a layer of crushed wear material ("fault gouge") between the fault blocks, which influences the strength and stability of faults. This thesis describes the results of a numerical model used to investigate the process of comminution in a sheared granular material. The model, based on the Discrete Element Method, simulates a layer of 2-D circular grains subjected to normal stress and sheared at constant velocity. An existing code was modified to allow grains to break when subjected to stress conditions that generate sufficient internal tensile stresses. A suite of five numerical runs was performed using the same initial system of grains with sizes randomly chosen from a pre-defined Gaussian distribution. A range of confining pressures was explored from 4.5 MPa to 27.0 MPa (in case of quartz grains with average diameter of 1 mm). The average effective friction coefficients of the five simulations were relatively unaffected by comminution and displayed a constant value of about 0.26. The amount of breakage was directly related to both the applied confining pressure and logarithm of the displacement along the fault. The particle size distribution evolved during the runs, but it was apparently determined only by the cumulative number of grain breakage events: two runs with the same number of breakage events had identical particle size distributions, even if they deformed to different extents under different stress conditions. These results suggest that the knowledge of both the local displacement and stress state on a fault can be used to infer the local particle size distribution of the gouge.
3

NUMERICAL SIMULATION OF EVACUATION PROCESS AGAINST TSUNAMI DISASTER IN MALAYSIA BY USING DISTINCT-ELEMENT-METHOD BASED MULTI-AGENT MODEL / 個別要素法型マルチエージェントモデルを用いたマレーシアにおける津波避難過程の数値シミュレーション

Muhammad Salleh Bin Haji Abustan 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17864号 / 工博第3773号 / 新制||工||1577(附属図書館) / 30684 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 後藤 仁志, 教授 戸田 圭一, 准教授 原田 英治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
4

MODELING FOR ACTIONS OF DIRECTIONAL SWITCHING AND GROUPING IN DEM-BASED CROWD BEHAVIOR SIMULATOR / 個別要素法型群集行動シミュレータにおける方向転換とグループ行動に関するモデリング

NOORHAZLINDA, BINTI ABD RAHMAN 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18934号 / 工博第3976号 / 新制||工||1613(附属図書館) / 31885 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 後藤 仁志, 教授 戸田 圭一, 准教授 原田 英治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
5

Distinct Element Simulation of the February 17th, 2006, Leyte, Philippines Rockslide

Asprouda, Panagiota 08 August 2007 (has links)
This study investigates the February 17th, 2006 massive rockslide that occurred in the island of Leyte, Philippines following heavy rainfall and four minor earthquakes. The rockslide is considered one of the largest and most catastrophic slides in the last few decades as it completely inundated the village of Guinsaugon, taking the lives of approximately 1,400 of the 1,800 residents of the village. The distinct element simulation of the rockslide is performed using 3DEC (Three-Dimensional Distinct Element Code) in order to investigate the underlying triggering mechanism of the slide as well as the behavior of the debris flow. The 3DEC models were established based on field observations from the U.S. Reconnaissance team and material and joint properties based on in-situ and laboratory test results. The possible triggering mechanisms considered in the distinct element analyses were the rainfall-induced hydraulic pressurization of the fault forming part of the main scarp, as well as the seismic acceleration due to the minor earthquakes that occurred the morning of the slide. The results of the analyses and simulations indicate that the rainfall-induced hydraulic pressurization of the fault was potentially the main trigger for the initiation of the slide. The minor earthquakes, which occurred before and around the time of the slide initiation, appeared to have very little effect on the triggering mechanism and the debris flow are comparable to witness accounts and field observations. The results presented in this study are expected to provide better understanding of rockslides such as the one that occurred in the Philippines on February 17, 2006. With further improvements in computational capabilities in the future, distinct element simulations can have the potential to reliably predict the initiation and behavior of slides, and help mitigate their impact. / Master of Science
6

Determination of equivalent hydraulic and mechanical properties of fractured rock masses using the distinct element method

Min, Ki-Bok January 2002 (has links)
<p>The equivalent continuum approach uses equivalent propertiesof rock mass as the input data for a continuum analysis. Thisis a common modeling method used in the field of rock mechanicsand hydrogeology. However, there are still unresolvedquestions; how can the equivalent properties be determined andis the equivalent continuum approach suitable for modeling thediscontinuous fractured rock mass.</p><p>The purpose of this paper is to establish a methodology todetermine the equivalent hydraulic and mechanical properties offractured rock masses by explicit representations of stochasticfracture systems, to investigate the scale-dependency of theproperties, and to investigate the conditions for theapplication of the equivalent continuum approach for thefractured rock masses. Geological data used for this study arefrom the site characterization of Sellafield, Cumbria, UK. Aprogram for the generation of stochastic Discrete FractureNetwork (DFN) is developed for the realization of fractureinformation and ten parent DFN models are constructed based onthe location, trace length, orientation and density offractures. Square models with the sizes varying from 0.25 m× 0.25 m to 10 m × 10 m are cut from the center ofthe each parent network to be used for the scale dependencyinvestigation. A series of the models in a parent network arerotated in 30 degrees interval to be used for investigation oftensor characteristic. The twodimensional distinct elementprogram, UDEC, was used to calculate the equivalentpermeability and compliance tensors based on generalizedDarcy’s law and general theory of anisotropic elasticity.Two criteria for the applicability of equivalent continuumapproach were established from the investigation: i) theexistence of properly defined REV (Representative ElementaryVolume) and ii) existence of the tensor in describing theconstitutive equation of fractured rock The equivalentcontinuum assumption cannot be accepted if any one of the abovetwo criteria is not met. Coefficient of variation and meanprediction error is suggested for the measures toquantitatively evaluate the errors involved in scale dependencyand tensor characteristic evaluation.</p><p>Equivalent permeability and mechanical properties (includingelastic modulus and Poisson’s ratios) determined onrealistic fracture network show that the presence of fracturehas a significant effect on the equivalent properties. Theresults of permeability, elastic moduli and Poisson's ratioshow that they narrow down with the increase of scale andmaintain constant range after a certain scales with someacceptable variation. Furthermore, Investigations of thepermeability tensor and compliance tensor in the rotated modelshow that their tensor characteristics are satisfied at acertain scale; this would indicate that the uses of theequivalent continuum approach is justified for the siteconsidered in this study.</p><p>The unique feature of the thesis is that it gives asystematic treatment of the homogenization and upscaling issuesfor the hydraulic and mechanical properties of fractured rockswith a unified approach. These developments established a firmfoundation for future application to large-scale performanceassessment of underground nuclear waste repository byequivalent continuum analysis.</p><p><b>Keywords :</b>Equivalent continuum approach, Equivalentproperty, Representative Elementary Volume (REV), DistinctElement Method, Discrete Fracture Network (DFN)</p>
7

Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses

Khan, Mohammad S. 13 August 2010 (has links)
The Distinct Element Method (DEM) and Discontinuous Deformation Analysis (DDA) are the two most commonly used discrete element methods in rock mechanics. Discrete element approaches are computationally expensive as they involve the interaction of multiple discrete bodies with continuously changing contacts. Therefore, it is very important to ensure that the method selected for the analysis is computationally efficient. In this research, a general assessment of DDA and DEM is performed from a computational efficiency perspective, and relevant enhancements to DDA are developed. The computational speed of DDA is observed to be considerably slower than DEM. In order to identify reasons affecting the computational efficiency of DDA, fundamental aspects of DDA and DEM are compared which suggests that they mainly differ in the contact mechanics, and the time integration scheme used. An in-depth evaluation of these aspects revealed that the openclose iterative procedure used in DDA which exhibits highly nonlinear behavior is one of the main reasons causing DDA to slow down. In order to improve the computational efficiency of DDA, an alternative approach based on a more realistic rock joint behavior is developed in this research. In this approach, contacts are assumed to be deformable, i.e., interpenetrations of the blocks in contact are permitted. This eliminated the computationally expensive open-close iterative procedure adopted in DDA-Shi and enhanced its speed up to four times. In order to consider deformability of the blocks in DDA, several approaches are reported. The hybrid DDA-FEM approach is one of them, although this approach captures the block deformability quite effectively, it becomes computationally expensive for large-scale problems. An alternative simplified uncoupled DDA-FEM approach is developed in this research. The main idea of this approach is to model rigid body movement and the block internal deformation separately. Efficiency and simplicity of this approach lie in keeping the DDA and the FEM algorithms separate and solving FEM equations individually for each block. Based on a number of numerical examples presented in this dissertation, it is concluded that from a computational efficiency standpoint, the implicit solution scheme may not be appropriate for discrete element modelling. Although for quasi-static problems where inertia effects are insignificant, implicit schemes have been successfully used for linear analyses, they do not prove to be advantageous for contact-type problems even in quasi-static mode due to the highly nonlinear behavior of contacts.
8

Modelo microestructural para medios granulares no saturados

Gili Ripoll, Josep Antoni 15 July 1988 (has links)
Se ha llevado a cabo:A) Un estudio de las propiedades básicas del suelo no saturado (tipo limo) a escala microestructural, incluyendo esqueleto sólido, fase liquida y fase gaseosa. B) Elaboración de un modelo conceptual discontinuo de comportamiento. La geometría interna esta construida por partículas, agua retenida en forma de meniscos alrededor de los contactos y aire ocupando los restantes poros. La interfase liquido gas esta gobernada por la succión y la tensión superficial. Los meniscos tienen un efecto rigidizador del esqueleto.Se observa la posible redistribución de la humedad y del aire, quedando acoplados en definitiva los aspectos mecánicos y de flujo.C) En base a lo anterior, implementación de un modelo numérico discontinuo de ensayo de comportamiento basado en ordenador. Se ha adaptado y modificado el D.E.M. de P.A. Cundall (diferencias finitas explicitas en el tiempo), indicado en el caso que se trata, con no-linealidades geométricas. Se han desarrollado importantes algoritmos de control geométrico. D) Verificación parcial del modelo y aplicación a casos típicos en suelo no saturado, especialmente el colapso.En conjunto es una herramienta útil para su estudio y permite apreciar algunos interesantes mecanismos de actuación de la succión a escala microscópica.
9

Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses

Khan, Mohammad S. 13 August 2010 (has links)
The Distinct Element Method (DEM) and Discontinuous Deformation Analysis (DDA) are the two most commonly used discrete element methods in rock mechanics. Discrete element approaches are computationally expensive as they involve the interaction of multiple discrete bodies with continuously changing contacts. Therefore, it is very important to ensure that the method selected for the analysis is computationally efficient. In this research, a general assessment of DDA and DEM is performed from a computational efficiency perspective, and relevant enhancements to DDA are developed. The computational speed of DDA is observed to be considerably slower than DEM. In order to identify reasons affecting the computational efficiency of DDA, fundamental aspects of DDA and DEM are compared which suggests that they mainly differ in the contact mechanics, and the time integration scheme used. An in-depth evaluation of these aspects revealed that the openclose iterative procedure used in DDA which exhibits highly nonlinear behavior is one of the main reasons causing DDA to slow down. In order to improve the computational efficiency of DDA, an alternative approach based on a more realistic rock joint behavior is developed in this research. In this approach, contacts are assumed to be deformable, i.e., interpenetrations of the blocks in contact are permitted. This eliminated the computationally expensive open-close iterative procedure adopted in DDA-Shi and enhanced its speed up to four times. In order to consider deformability of the blocks in DDA, several approaches are reported. The hybrid DDA-FEM approach is one of them, although this approach captures the block deformability quite effectively, it becomes computationally expensive for large-scale problems. An alternative simplified uncoupled DDA-FEM approach is developed in this research. The main idea of this approach is to model rigid body movement and the block internal deformation separately. Efficiency and simplicity of this approach lie in keeping the DDA and the FEM algorithms separate and solving FEM equations individually for each block. Based on a number of numerical examples presented in this dissertation, it is concluded that from a computational efficiency standpoint, the implicit solution scheme may not be appropriate for discrete element modelling. Although for quasi-static problems where inertia effects are insignificant, implicit schemes have been successfully used for linear analyses, they do not prove to be advantageous for contact-type problems even in quasi-static mode due to the highly nonlinear behavior of contacts.
10

Numerical Simulation of a Hot Dry Rock Geothermal Reservoir in the Cooper Basin, South Australia

Bronwyn Muller Unknown Date (has links)
This thesis describes the development and production of numerical simulations of the creation of a Hot Dry Rock (HDR) geothermal reservoir. This geothermal reservoir that was simulated is owned by Geodynamics Limited and is located in the Cooper Basin, South Australia. The simulations show the geometry of the geothermal reservoir and predict the productive lifespan of the reservoir. Geothermal energy, which is the thermal energy that is stored in the interior of the earth, is an enormous energy source and as such there is great interest in technology that allows this energy to be harnessed. The HDR process of extracting the geothermal energy from rock involves drilling a borehole to a suitable depth and injecting cold water into the rock via this well (known as the injection well) to create a reservoir by opening up fractures in the rock. As water is forced through the reservoir, heat is extracted from the rock via conduction and transferred to the water, creating an heat exchange. Warm water is brought to the surface via another well known as the extraction well. The heat from the water is used to generate electricity and then the water is fed back into the injection well, completing the cycle. The creation of a HDR geothermal reservoir comprises of many aspects: the injection of the fluid into the jointed rock system, the opening and shearing of the joints, the creation of the fluid reservoir in the rock and the temperature effects of the fluid flow through the joints. This work incorporates all of these aspects. Due to the multi-physics nature of this process multiple computational modelling strategies were implemented to allow for authentic simulation of the entire process. The mechanical rock behaviour was primarily simulated the Distinct Element Method. This two dimensional Distinct Element Method program allowed for a realistically scaled model of the whole geothermal reservoir to be developed. This model was particularly useful for modelling the joint behaviour as the discrete nature of this method compares well with the joint system on such a scale. A discrete particle based model was used to model the joint behaviour on a small scale. These models demonstrated the behaviour of joints under compressional strain, showing slip and the effects of joint dilatancy. The productive lifespan of the geothermal reservoir was modelled using a Finite Element Method program based on Darcy's Law and an height-averaged heat equation. The aim of this model was to simulate the effects on the rock temperature of the fluid flow through the reservoir. The lifespan of the reservoir with differing well geometries was tested using this model to show which geometry would extend the productive lifetime of the geothermal reservoir. The results produced from the DEM models showed that the reservoir geometry is very much dependent upon the joint angle, and under the Cooper Basin stress regime steeper joints will be more likely to open. Joint dilatancy also affects the fluid flow rates as the amount of joint opening is dependent upon the joint dilatancy angle. The modelling of the temperature drawdown of the rock due to the fluid flow showed that a square configuration of wells is the ideal configuration to prolong the productive lifespan of the HDR geothermal reservoir. Results produced with the modelling parameters provided by Geodynamics Limited indicate that the productive lifespan of the Cooper Basin HDR geothermal reservoir created is approximately 50 years. This reservoir is only one of many that can be created at the site to prolong the productivity of the energy plant. The combined results of this modelling strategy give an overall image of the creation and lifetime of the HDR geothermal energy plant in the Cooper Basin.

Page generated in 0.1014 seconds