11 |
Numerical Solution of Multiscale Electromagnetic SystemsTOBON, LUIS E. January 2013 (has links)
<p>The Discontinuous Galerkin time domain (DGTD) method is promising in modeling of realistic multiscale electromagnetic systems. This method defines the basic concept for implementing the communication between multiple domains with different scales.</p><p>Constructing a DGTD system consists of several careful choices: (a) governing equations; (b) element shape and corresponding basis functions for the spatial discretization of each subdomain; (c) numerical fluxes onto interfaces to bond all subdomains together; and (d) time stepping scheme based on properties of a discretized</p><p>system. This work present the advances in each one of these steps.</p><p> </p><p>First, a unified framework based on the theory of differential forms and the finite element method is used to analyze the discretization of the Maxwell's equations. Based on this study, field intensities (<bold>E</bold> and <bold>H</bold>) are associated to 1-forms and curl-conforming basis functions; flux densities (<bold>D</bold> and <bold>B</bold>) are associated to 2-forms and divergence-conforming basis functions; and the constitutive relations are defined by Hodge operators.</p><p>A different approach is the study of numerical dispersion. Semidiscrete analysis is the traditional method, but for high order elements modal analysis is prefered. From these analyses, we conclude that a correct discretization of fields belonging to different p-form (e.g., <bold>E</bold> and <bold>B</bold>) uses basis functions with same order of interpolation; however, different order of interpolation must be used if two fields belong to the same p-form (e.g., <bold>E</bold> and <bold>H</bold>). An alternative method to evaluate numerical dispersion based on evaluation of dispersive Hodge operators is also presented. Both dispersion analyses are equivalent and reveal same fundamental results. Eigenvalues, eigenvector and transient results are studied to verify accuracy and computational costs of different schemes. </p><p>Two different approaches are used for implementing the DG Method. The first is based on <bold>E</bold> and <bold>H</bold> fields, which use curl-conforming basis functions with different order of interpolation. In this case, the Riemman solver shows the best performance to treat interfaces between subdomains. A new spectral prismatic element, useful for modeling of layer structures, is also implemented for this approach. Furthermore, a new efficient and very accurate time integration method for sequential subdomains is implemented.</p><p>The second approach for solving multidomain cases is based on <bold>E</bold> and <bold>B</bold> fields, which use curl- and divergence-conforming basis functions, respectively, with same order of interpolation. In this way, higher accuracy and lower memory consumption are obtained with respect to the first approach based on <bold>E</bold> and <bold>H</bold> fields. The centered flux is used to treat interfaces with non-conforming meshes, and both explicit Runge-Kutta method and implicit Crank-Nicholson method are implemented for time integration. </p><p>Numerical examples and realistic cases are presented to verify that the proposed methods are non-spurious and efficient DGTD schemes.</p> / Dissertation
|
12 |
Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substancesRizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
|
13 |
Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substancesRizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
|
14 |
Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional / Parallel computational model for hydrodynamics and for the scalar two-dimensional and three-dimensional transport of substancesRizzi, Rogerio Luis January 2002 (has links)
Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica. / A multi-physics parallel computational model was developed and implemented for the simulation of substance transport and for the two-dimensional (2D) and threedimensional (3D) hydrodynamic flow in water bodies. The motivation for this work is focused in the fact that the margins and coastal zones of rivers, lakes, estuaries, seas and oceans are places of human agglomeration, because of their importance for economic, transport, and leisure activities causing ecosystem disequilibrium. This fact stimulates the researches related to this topic. Therefore, the goal of this work is to build a computational model of high numerical quality, that allows the simulation of hydrodynamics and of scalar transport of substances behavior in water bodies of complex configuration, aiming at their rational management. Since the focuses of this thesis are the numerical and computational aspects of the algorithms, the main numerical-computational characteristics and properties that the solutions need to fulfill were analyzed. That is: stability, monotonicity, positivity and mass conservation. Solution strategies focus on advective and diffusive terms, horizontal and vertical terms of the transport equation. In this way, horizontal advection is solved using Sweby’s flow limiting method; and the vertical transport (advection and diffusion) is solved with Gross and Crank-Nicolson’s beta methods. Meshes of different resolutions are employed in the solution of the multi-physics problem. The resulting numerical scheme is semi-implicit, computationally efficient, stable and provides second order accuracy in space and in time. The equation systems resulting of the discretization, in finite differences, of the flow and 3D transport are of large scale, linear, sparse and symmetric positive definite (SPD). In the 2D case, the systems are linear, but the equation systems for the transport equation are not symmetric. Therefore, for the solution of SPD equation systems and of the non-symmetric systems we employ, respectively, the methods of Krylov’s sub-space of the conjugate gradient and of the generalized minimum residue. In the case of the solution of 3-diagonal systems, Thomas algorithm and Cholesky algorithm are used. The parallel solution was obtained through two approaches. In data decomposition or partitioning, operation and data are distributed among the processes available and are solved in parallel. In domain decomposition the solution of the global problem is obtained combining the solutions of the local sub-problems. In particular, in this work, Schwarz additive domain decomposition method is used as solution method and as preconditioner. In order to maximize the computation/communication relation, since the computational efficiency of the parallel solution depends directly of the load balancing and of the minimization of the communication between processes, graph-partitioning algorithms were used to obtain the sub-problems or part of the data locally. The resulting parallel computational model is computationally efficient and of high numerical quality.
|
15 |
Advanced Algorithms for Virtual Reconstruction and Finite Element Modeling of Materials with Complex MicrostructuresYang, Ming January 2021 (has links)
No description available.
|
16 |
Méthode de décomposition de domaine avec parallélisme hybride et accélération non linéaire pour la résolution de l'équation du transport Sn en géométrie non-structurée / Domain decomposition method using a hybrid parallelism and a low-order acceleration for solving the Sn transport equation on unstructured geometryOdry, Nans 07 October 2016 (has links)
Les schémas de calcul déterministes permettent une modélisation à moindre coût du comportement de la population de neutrons en réacteur, mais sont traditionnellement construits sur des approximations (décomposition réseau/cœur, homogénéisation spatiale et énergétique…). La thèse revient sur une partie de ces sources d’erreur, de façon à rapprocher la méthode déterministe d’un schéma de référence. L’objectif est de profiter des architectures informatiques modernes (HPC) pour résoudre le problème neutronique à l’échelle du cœur 3D, tout en préservant l’opérateur de transport et une partie des hétérogénéités de la géométrie. Ce travail est réalisé au sein du solveur cœur Sn Minaret de la plateforme de calcul Apollo3® pour des réacteurs à neutrons rapides.Une méthode de décomposition de domaine en espace, est retenue. L'idée consiste à décomposer un problème de grande dimension en sous-problèmes "indépendants" de taille réduite. La convergence vers la solution globale est assurée par échange de flux angulaires entre sous-domaines au cours d'un processus itératif. En favorisant un recours massif au parallélisme, les méthodes de décomposition de domaine contribuent à lever les contraintes en mémoire et temps de calcul. La mise en place d'un parallélisme hybride, couplant les technologies MPI et OpenMP, est en particulier propice au passage sur supercalculateur. Une méthode d'accélération de type Coarse Mesh Rebalance est ajoutée pour pallier à la pénalité de convergence constatée sur la méthode de décomposition de domaine. Le potentiel du nouveau schéma est finalement mis en évidence sur un coeur CFV 3D, construit en préservant l'hétérogénéité des assemblages absorbants. / Deterministic calculation schemes are devised to numerically solve the neutron transport equation in nuclear reactors. Dealing with core-sized problems is very challenging for computers, so much that the dedicated core codes have no choice but to allow simplifying assumptions (assembly- then core-scale steps…). The PhD work aims to correct some of these ‘standard’ approximations, in order to get closer of reference calculations: thanks to important increases in calculation capacities (HPC), nowadays one can solve 3D core-sized problems, using both high mesh refinement and the transport operator. Developments were performed inside the Sn core solver Minaret, from the new CEA neutronics platform Apollo3® for fast neutrons reactors of the CFV-kind.This work focuses on a Domain Decomposition Method in space. The fundamental idea involves splitting a core-sized problem into smaller and 'independent' subproblems. Angular flux is exchanged between adjacent subdomains. In doing so, all combined subproblems converge to the global solution at the outcome of an iterative process. Domain decomposition is well-suited to massive parallelism, allowing much more ambitious computations in terms of both memory requirements and calculation time. An hybrid MPI/OpenMP parallelism is chosen to match the supercomputers architecture. A Coarse Mesh Rebalance accelration technique is added to balance the convergence penalty observed using Domain Decomposition. The potential of the new calculation scheme is demonstrated on a 3D core of the CFV-kind, using an heterogeneous description of the absorbent rods.
|
17 |
Numerical modeling of microwave plasma actuators for aerodynamic flow control / Modélisation numérique des actionneurs plasma de décharge micro-ondes pour le contrôle d'écoulement aérodynamiqueArcese, Emanuele 05 July 2019 (has links)
Au cours des dernières décennies, les plasmas créés par une décharge micro-ondes ont de plusen plus attiré l’attention de la communauté scientifique aérospatiale sur le sujet du contrôled’écoulements. En effet, il a été démontré expérimentalement que le dépôt d’énergie obtenu parle plasma peut modifier les propriétés aérodynamiques de l’écoulement autour d’un objet telleque la trainée de frottement. Or, la conception et l’optimisation de ces actionneurs plasma entant que technique de contrôle d’écoulements nécessitent une compréhension approfondie de laphysique sous-jacente que les seules expériences sont incapables de fournir.Dans ce contexte, nous nous intéressons à la modélisation numérique de l’interaction desondes électromagnétiques avec un plasma et le gaz afin de mieux comprendre la nature desdécharges micro-ondes et leur applicabilité. La modélisation de ces phénomènes présente desdifficultés importantes en raison du couplage multi-physique et donc de la multitude des échellesspatiales et temporelles qui apparaissent. Ce travail de thèse traite des questions de physiqueet de mathématiques appliquées soulevées par la modélisation numérique de ces plasmas.La première partie du travail se focalise sur les questions de validité du modèle physique duclaquage micro-onde fondé sur l’approximation de champ effectif local. En raison des gradientsde densité du plasma très élevés, la validité du concept de champ effectif local peut être misen doute. Pour cela, un modèle fluide du second ordre est développé en incluant une equationd’énergie électronique non-locale. Cette modélisation permet de décrire de façon plus précisele dépôt d’énergie par plasma induisant la formation d’ondes de choc dans le gaz. Une analysedimensionnelle du système d’équations fluide permet de caractériser la non-localité en espace dubilan d’énergie électronique en fonction du champ électrique réduit et de la fréquence de l’onderéduite. Une discussion est également menée sur d’autres approximations des coefficients detransport électronique. Dans une deuxième partie, la construction et l’analyse d’une méthode multi-échelles derésolution numérique du problème de propagation des ondes électromagnétiques dans le plasmasont réalisées. Il s’agit du couplage entre les équations de Maxwell dans le domaine temporel avecune équation de quantité de mouvement pour les électrons. L’approche s’appuie sur la méthodede décomposition de domaine de type Schwartz, basée sur une formulation variationnelle duschéma de Yee et utilisant deux niveaux de grilles Cartésiennes emboitées. Une grille locale,appelée patch, est utilisée pour calculer de manière itérative la solution dans la région du plasmaoù une meilleure précision est requise. La méthode proposée permet le raffinement local etdynamique du maillage spatial tout en conservant l’énergie du système. Une analyse théorique dela convergence de l’algorithme pour les résolutions temporelles explicite et implicite est égalementréalisée. Dans la dernière partie, des simulations numériques sur le claquage micro-ondes et la formation de structures filamentaires de plasma sont conduites. Les effets de différents types d’approximations sur le modèle physique du plasma sont analysés. Puis, ces expériences numériques démontre la précision et l’efficacité, en terme de temps de calcul, de la méthode multi-échelleproposée. Enfin, on étudie les effets de chauffage du gaz sur la formation et l’entretien de structures filamentaires dans l’air à pression atmosphérique. Pour cela, le modèle micro-onde-plasma développé est couplé avec les équations de Navier-Stokes instationnaires pour les écoulements compressibles. Les simulations montrent des caractéristiques intéressantes de la dynamique deces structures plasma pendant le processus de chauffage du gaz, qui sont en accord étroit avec les données expérimentales. / In recent decades, microwave discharge plasmas have attracted increasing attention of aerospace scientific community to the subject of aerodynamic flow control because of their capability of sub- stantially modifying the properties of the flow around bodies by effective energy deposition. The design and optimization of these plasma actuators as flow control technique require a compre- hensive understanding of the complex physics involved that the sole experiments are incapable to provide.In this context, we have interest in the numerical modeling of the mutual interaction of elec- tromagnetic waves with plasma and gas in order to better understand the nature of microwave discharges and their applicability. A challenging problem arises when modeling such phenomena because of the coupling of different physics and therefore the multiplicity of spatial and tempo- ral scales involved. A solution is provided by this thesis work which addresses both physics and applied mathematics questions related to microwave plasma modeling.The first part of this doctorate deals with validity matters of the physical model of microwave breakdown based on the local effective field concept. Because of large plasma density gradients, the local effective field approximation is questionable and thus a second-order plasma fluid model is developed, where the latter approximation is replaced by the local mean energy approximation. This modeling approach enables to take into account the non-locality in space of the electron energy balance that provides a more accurate description of the energy deposition by microwave plasma leading to the shock waves formation into the gas. A dimensionless analysis of the plasma fluid system is performed in order to theoretically characterize the non-locality of the introduced electron energy equation as function of the reduced electric field and wave frequency. It also discusses other approximations related to the choice and method of calculation of electron transport coefficients.Concerning the mathematical aspects, the thesis work focuses on the design and the analysis of a multiscale method for numerically solving the problem of electromagnetic wave propagation in microwave plasma. The system of interest consists of time-dependent Maxwell’s equations coupled with a momentum transfer equation for electrons. The developed approach consists of a Schwartz type domain decomposition method based on a variational formulation of the standard Yee’s scheme and using two levels of nested Cartesian grids. A local patch of finite elements is used to calculate in an iterative manner the solution in the plasma region where a better precision is required. The proposed technique enables a conservative local and dynamic refinement of the spatial mesh. The convergence behavior of the iterative resolution algorithm both in an explicit and implicit time-stepping formulation is then analyzed.In the last part of the doctorate, a series of numerical simulations of microwave breakdown and the filamentary plasma array formation in air are performed. They allow to study in detail the consequences of the different types of physical approximations adopted in the plasma fluid model. Then, these numerical experiments demonstrate the accuracy and the computational efficiency of the proposed patch correction method for the problem of interest. Lastly, a numerically investigation of the effects of gas heating on the formation and sustaining of the filamentary plasma array in atmospheric-pressure air is carried out. For doing this, the developed microwave-plasma model is coupled with unsteady Navier-Stokes equations for compressible flows. The simulations provide interesting features of the plasma array dynamics during the process of gas heating, in close agreement with experimental data.
|
18 |
Interaction entre un fluide à haute température et un béton : contribution à la modélisation des échanges de masse et de chaleur / Interaction between a fluid at high temperature and a concrete : contribution to the modeling of heat and mass transferIntroïni, Clément 19 November 2010 (has links)
Lors d'un hypothétique accident grave de réacteur à eau sous pression, un mélange de matériaux fondus, appelé corium, issu de la fusion du cœur peut se relocaliser dans le puits de cuve constitué par un radier en béton. Les codes d'évaluation réacteur pour simuler la phénoménologie de l'interaction corium-béton sont basés sur une description à grande échelle des échanges qui soulève de nombreuses questions, tant sur la prise en compte des phénomènes multi-échelles mis en jeu que sur la structure adoptée de la couche limite au voisinage du front d'ablation. Dans ce contexte, l'objectif principal de ce travail consiste à aborder le problème de la structure de la couche limite par simulation numérique directe. Ce travail s'inscrit dans le cadre plus général d'une description et d'une modélisation multi-échelle des échanges, c'est-à-dire de l'échelle locale associée au voisinage du front d'ablation jusqu'à l'échelle du code d'évaluation réacteur. Une telle description multi-échelle des échanges soulève le problème de la description locale de l'écoulement multiphasique multiconstituant mais aussi le problème du changement d'échelle et en particulier le passage de l'échelle locale à l'échelle de description supérieure dite macroscopique associée aux mouvements convectifs dans le bain de corium. Parmi les difficultés associées au changement d'échelle, nous nous intéressons à la problématique de la construction de conditions aux limites effectives ou lois de parois pour les modèles macroscopiques. Devant la complexité du problème multiphasique multiconstituant posé au voisinage du front, cette contribution a été abordée sur un problème modèle. Des conditions aux limites dites effectives ont été construites dans le cadre d'une méthode de décomposition de domaine puis testées pour un problème d'écoulement laminaire de convection naturelle sur parois rugueuses. Mˆeme si le problème traité reste encore éloigné des applications visées, cette contribution offre de nombreuses perspectives et constitue une première étape d'une modélisation multiéchelle des échanges pour la problématique de l'interaction corium-béton. Dans le cas plus complexe des écoulements multiphasiques multiconstituants et devant les difficultés expérimentales associées, le développement de lois de parois pour les outils existants aux échelles de description supérieures nécessite, au préalable, de disposer d'un outil de simulation numérique directe de l'écoulement au voisinage du front d'ablation. L'outil développé dans ce travail correspond à un modèle de Cahn-Hilliard/Navier-Stokes pour un mélange diphasique (liquide-gaz) compositionnel (corium-béton fondu) s'appuyant sur une description du système selon trois paramètres d'ordre associés respectivement aux fractions volumiques du gaz et aux deux espèces miscibles de la phase liquide ainsi que sur une décomposition de l'énergie libre selon une contribution diphasique et compositionnelle. Les équations de transport sont dérivées dans le cadre de la thermodynamique des processus irréversibles et résolues sur la base d'une application éléments finis de la plate-forme PELICANS. Plusieurs expériences numériques illustrent la validité et les potentialités d'application de cet outil sur des problèmes diphasiques et/ou compositionnels. Enfin, à partir de l'outil développé, nous abordons par simulation numérique directe une étude de la structure de la couche limite au voisinage du front d'ablation pour des bétons siliceux et silico-calcaire. / In the late phases of some scenario of hypothetical severe accident in Pressurized Water Reactors, a molten mixture of core and vessel structures, called corium, comes to interact with the concrete basemat. The safety numerical tools are lumped parameter codes. They are based on a large averaged description of heat and mass transfers which raises some uncertainties about the multi-scale description of the exchanges but also about the adopted boundary layer structure in the vicinity of the ablation front. In this context, the aim of this work is to tackle the problem of the boundary layer structure by means of direct numerical simulation. This work joins within the more general framework of a multi-scale description and a multi-scale modeling, namely from the local scale associated with the vicinity of the ablation front to the scale associated with the lumped parameter codes. Such a multi-scale description raises not only the problem of the local description of the multiphase multicomponent flow but also the problem of the upscaling between the local- and the macro-scale which is associated with the convective structures within the pool of corium. Here, we are particularly interested in the building of effective boundary conditions or wall laws for macro-scale models. The difficulty of the multiphase multicomponent problem at the local scale leads us to consider a relatively simplified problem. Effective boundary conditions are built in the frame of a domain decomposition method and numerical experiments are performed for a natural convection problem in a stamp shaped cavity to assess the validity of the proposed wall laws. Even if the treated problem is still far from the target applications, this contribution can be viewed as a first step of a multi-scale modeling of the exchanges for the molten core concrete issue. In the more complicated case of multiphase multicomponent flows, it is necessary to have a direct numerical simulation tool of the flow at the local scale to build wall laws for macro-scale models. Here, the developed tool corresponds to a Cahn-Hilliard/Navier-Stokes model for a two-phase compositional system. It relies on a description of the system by three volume fractions and on a free energy composed by a two-phase part and a compositional part. The governing equations are derived in the frame of the thermodynamic of irreversible processes. They are solved on the basis of a finite element application of the object-oriented software component library PELICANS. Several numerical experiments illustrate the validity and the potentialities of application of this tool on two-phase compositional problems. Finally, using the developed tool, we tackle by means of direct numerical simulation the problem boundary layer structure in the vicinity of the ablation front for limestone-sand and siliceous concretes.
|
19 |
Amélioration des méthodes de calcul de cœurs de réacteurs nucléaires dans APOLLO3 : décomposition de domaine en théorie du transport pour des géométries 2D et 3D avec une accélération non linéaire par la diffusion / Contribution to the development of methods for nuclear reactor core calculations with APOLLO3 code : domain decomposition in transport theory for 2D and 3D geometries with nonlinear diffusion accelerationLenain, Roland 15 September 2015 (has links)
Ce travail de thèse est consacré à la mise en œuvre d’une méthode de décomposition de domaine appliquée à l’équation du transport. L’objectif de ce travail est l’accès à des solutions déterministes haute-fidélité permettant de correctement traiter les hétérogénéités des réacteurs nucléaires, pour des problèmes dont la taille varie d’un motif d’assemblage en 3 dimensions jusqu’à celle d’un grand cœur complet en 3D. L’algorithme novateur développé au cours de la thèse vise à optimiser l’utilisation du parallélisme et celle de la mémoire. La démarche adoptée a aussi pour but la diminution de l’influence de l’implémentation parallèle sur les performances. Ces objectifs répondent aux besoins du projet APOLLO3, développé au CEA et soutenu par EDF et AREVA, qui se doit d’être un code portable (pas d’optimisation sur une architecture particulière) permettant de réaliser des modélisations haute-fidélité (best estimate) avec des ressources allant des machines de bureau aux calculateurs disponibles dans les laboratoires d’études. L’algorithme que nous proposons est un algorithme de Jacobi Parallèle par Bloc Multigroupe. Chaque sous domaine est un problème multigroupe à sources fixes ayant des sources volumiques (fission) et surfaciques (données par les flux d’interface entre les sous domaines). Le problème multigroupe est résolu dans chaque sous domaine et une seule communication des flux d’interface est requise par itération de puissance. Le rayon spectral de l’algorithme de résolution est rendu comparable à celui de l’algorithme de résolution classique grâce à une méthode d’accélération non linéaire par la diffusion bien connue nommée Coarse Mesh Finite Difference. De cette manière une scalabilité idéale est atteignable lors de la parallélisation. L’organisation de la mémoire, tirant parti du parallélisme à mémoire partagée, permet d’optimiser les ressources en évitant les copies de données redondantes entre les sous domaines. Les architectures de calcul à mémoire distribuée sont rendues accessibles par un parallélisme hybride qui combine le parallélisme à mémoire partagée et à mémoire distribuée. Pour des problèmes de grande taille, ces architectures permettent d’accéder à un plus grand nombre de processeurs et à la quantité de mémoire nécessaire aux modélisations haute-fidélité. Ainsi, nous avons réalisé plusieurs exercices de modélisation afin de démontrer le potentiel de la réalisation : calcul de cœur et de motifs d’assemblages en 2D et 3D prenant en compte les contraintes de discrétisation spatiales et énergétiques attendues. / This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems’ size ranging from colorsets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each subdomain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the subdomains). The multi-group problem is solved in each subdomain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the subdomains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of memory required for high-fidelity modeling. Thus, we have completed several modeling exercises to demonstrate the potential of the method: 2D full core calculation of a large pressurized water reactor and 3D colorsets of assemblies taking into account the constraints of space and energy discretization expected for high-fidelity modeling.
|
20 |
Etude de techniques de calculs multi-domaines appliqués à la compatibilité électromagnétique / Study of multi-domain computation techniques applied to electromagnetic compatibilityPatier, Laurent 17 November 2010 (has links)
Le contexte d’étude est celui de la Compatibilité ÉlectroMagnétique (CEM). L’objectif de la CEM est, comme son nom l’indique, d’assurer la compatibilité entre une source de perturbation électromagnétique et un système électronique victime. Or, la prédiction de ces niveaux de perturbation ne peut pas s’effectuer à l’aide d’un simple calcul analytique, en raison de la géométrie qui est généralement complexe pour le système que l’on étudie, tel que le champ à l’intérieur d’un cockpit d’avion par exemple. En conséquence, nous sommes contraints d’employer des méthodes numériques, dans le but de prédire ce niveau de couplage entre les sources et les victimes. Parmi les nombreuses méthodes numériques existantes à ce jour, les méthodes Multi-Domaines (MD) sont très prisées. En effet, elles offrent la liberté aux utilisateurs de choisir la méthode numérique la plus adaptée, en fonction de la zone géométrique à calculer. Au sein de ces méthodes MD, la « Domain Decomposition Method » (DDM) présente l’avantage supplémentaire de découpler chacun de ces domaines. En conséquence, la DDM est particulièrement intéressante, vis-à-vis des méthodes concurrentes, en particulier sur l’aspect du coût numérique. Pour preuve, l’ONERA continue de développer cette méthode qui ne cesse de montrer son efficacité depuis plusieurs années, notamment pour le domaine des Surfaces Équivalentes Radar (SER) et des antennes. L’objectif de l’étude est de tirer profit des avantages de cette méthode pour des problématiques de CEM. Jusqu’à maintenant, de nombreuses applications de CEM, traitées par le code DDM, fournissaient des résultats fortement bruités. Même pour des problématiques électromagnétiques très simples, des problèmes subsistaient, sans explication convaincante. Ceci justifie cette étude. Le but de cette thèse est de pouvoir appliquer ce formalisme DDM à des problématiques de CEM. Dans cette optique, nous avons été amenés à redéfinir un certain nombre de conventions, qui interviennent au sein de la DDM. Par ailleurs, nous avons développé un modèle spécifique pour les ouvertures, qui sont des voies de couplage privilégiées par les ondes, à l’intérieur des cavités que représentent les blindages. Comme les ouvertures sont, en pratique, de petites dimensions devant la longueur d’onde, on s’est intéressé à un modèle quasi-statique. Nous proposons alors un modèle, qui a été implémenté, puis validé. Suite à ce modèle, nous avons développé une méthode originale, basée sur un calcul en deux étapes, permettant de ne plus discrétiser le support des ouvertures dans les calculs 3D. / The context of the study is the ElectroMagnetic Compatibility (EMC). Principal aim of the EMC is to ensure the compatibility between an electromagnetic perturbance source and an electronic device victim. Unfortunately, the perturbation levels prediction can not be made using an analytic formula, because the geometry which is generally complex for the interesting system, for example the field inside an aircraft’s cockpit. Therefore, we are contrained to use numerical methods, to be able to evaluate this coupling level between sources and victims. Among several existing numerical methods, Multi-Domains (MD) methods are very interesting. They offer to users the freedom to choose the most powerfull numerical method, in terms of the geometrical zone evaluated. With the MD methods, « Domain Decomposition Method » (DDM) has the avantage of decouplingeach of theses areas. Therefore, DDM is very interesting, compared to other methods, in particular on the numerical cost. ONERA keeps on developing this method, which has not stop showing his efficiency since several years, in particular in Radar Cross Section (RCS) and antennas. The objective of this study is to take the benefits of this method for EMC problems. Up to now, several EMC applications treated by the DDM code provided results strongly noisy. Even for with very simple electromagnetic cases, some problems remained without convincing explanations. This justifies this study. The aim of this thesis is to can be able to apply DDM formalism to EMC problems. Then, we have been induced to redefine a number of conventions which are involved in the DDM. Otherwise, we have developed a specific model for the apertures which are privilegied tracts of the coupling by the penetration of waves inside cavities (shieldings). As the apertures have in practice smaller dimensions compared to the wavelength, we have been interested to a quasistatic model which was developped, implemented and validated. Following this model, we have developed an original method, based on a two step calculation, able to do not discretize the apertures support in 3D computations.
|
Page generated in 0.0943 seconds