Spelling suggestions: "subject:"dominantnegative"" "subject:"dominanttinegatiivinen""
1 |
Characterisation of a dominant negative androgen receptor in prostate cancer cells.Centenera, Margaret Mary January 2008 (has links)
Prostate cancer is the second leading cause of death from cancer in Australian men. As prostate cancer cells are reliant on androgens for growth and survival, the standard therapy for metastatic disease is androgen ablation therapy (AAT). AAT inhibits androgen signalling by altering androgen synthesis or prevent binding of androgens to their intracellular mediator, the androgen receptor (AR). Although initially effective, virtually all patients relapse, beyond which there are limited treatment options. The failure of AAT is not necessarily due to a decreased requirement for androgen signalling, but rather the AR is able to maintain signalling and tumour growth in an androgen-depleted environment. Therefore novel strategies that directly target the AR may provide a more effective therapeutic approach. We have endeavoured to suppress AR activity in prostate cancer cells by utilising a dominant negative AR. The most effective dominant negative construct developed, ARi41O, lacks amino acids 39-410 in the AR amino terminal transactivation domain. In studies of transcriptional activity, ARi410 has no intrinsic activity but inhibits the activity of wild type AR (wtAR) and also clinically relevant AR variants, by up to 95%. The objective of this thesis was to characterise the mechanisms of action of ARi410 and assess the functional effects of introducing this dominant negative receptor into prostate cancer cells. To investigate the mechanism by which ARi410 suppresses AR activity, a robust and sensitive AR inhibition assay was developed. This assay revealed that ARi410 is a potent inhibitor of AR activity on three independent AR-regulated promoters, regardless of the level of AR expression. Furthermore, while ARi410 can inhibit AR activity, it does not alter AR protein levels. By using ARi410 variants with mutations and/or deletions in regions of functional importance, the AR inhibition assay was also used to identify the critical regions of ARi410 required for its dominant negative activity. These studies demonstrate that the dominant negative activity of ARi41 0 is ligand-dependent, requires dimerisation through the ligand binding domain (LBD) and an intact DNA-binding domain (DBD). Further investigation into the mechanism of dominant negative activity revealed that ARi410 does not alter the subcellular localisation of AR, as both receptors are predominantly cytoplasmic in the absence of ligand and rapidly co-localise to the nucleus in response to androgens. Furthermore, an interaction between AR and ARi410 was observed in the presence and absence of ligand, and electrophoretic mobility shift assays demonstrated that AR and ARi410 form heterodimers on DNA. These studies led to the conclusion that the mechanism of dominant negative activity by ARi4I0 involves the formation of inactive receptor heterodimers that assemble on DNA and suppress AR activity. To determine the functional consequence of expressing the dominant negative androgen receptor in prostate cancer cells, an adenoviral method of gene delivery was developed. Adenoviral expression of ARi410 in LNCaP prostate cancer cells did not allow assessment of cell viability due to cell-specific toxicity of the viral vectors when expressed long-term. However, short-term expression of ARi410 in LNCaP cells resulted in inhibition of AR signalling, as determined by reduced expression of the androgen regulated genes apolipoprotein D and kallikrein 2. Importantly, this finding is consistent with the inhibitory activity of ARi410 observed using synthetic AR-regulated reporter genes in the AR inhibition assay, and demonstrates that ARi410 can effectively suppress endogenous AR signalling. The results of this thesis indicate that heterodimerisation between AR and ARi410 is the most likely mechanism of dominant negative inhibition of AR function by ARi410, and that the DBD and dimerisation through the LBD are required for optimal dominant negative activity. Furthermore, this thesis has demonstrated that ARi410 is an effective inhibitor of AR signalling and provides a basis for further functional studies and evaluation of the dominant negative androgen receptor in vitro and in vivo. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1338478 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
|
2 |
Untersuchungen zur Oligomerisierung des Mitochondrien-assoziierten Anteils des p53 TumorsuppressorproteinsSchmitt, Katrin 09 June 2009 (has links) (PDF)
Ziel der vorliegenden Arbeit war es, die Quartärstruktur des Tumorsuppressors p53 an Mitochondrien zu untersuchen. In vorangegangenen Untersuchungen der Arbeitsgruppe konnte festgestellt werden, dass der transkriptionsunabhängige Apoptoseweg von p53 an den Mitochondrien resistent war gegenüber dominant-negativer Hemmung durch mutiertes p53. Dadurch stellte sich die Frage, welche Mechanismen für diese Resistenz verantwortlich sind. Unter den zahlreichen, denkbaren Möglichkeiten erschienen zwei als wahrscheinlich: a) Der Mechanismus, der p53 nach Stress an die Mitochondrien transloziert, ist spezifisch für Wildtyp-Homotetramer; b) mitochondriales p53 liegt als Monomer vor. Für das experimentelle Vorgehen wurden HCT116 Colon-Adenokarzinomzellen und MCF-7 Mamaadenokarzinomzellen verwendet, die beide einen intakten p53- Apoptoseweg besitzen. Zudem wurden HCT116R175HPuro und HCT116R273HPuro verwendet, um die Eigenschaften von mutiertem p53 an Mitochondrien untersuchen zu können. Aus den Zellen wurden die Mitochondrien isoliert, um dann die mitochondrialen Proteine durch die beiden Crosslinker Bismaleimidohexan (BMH) und Glutaraldehyd (GLD) zu vernetzen. Durch einen Western Blot wurden die Proteine voneinander getrennt und detektiert. In Voruntersuchungen konnte gezeigt werden, dass Wildtyp-p53 im Gesamtzellextrakt von HCT116 Zellen, ebenso wie die p53 Mutanten, sowohl als Monomer als auch als Oligomer vorkommt. Außerdem konnte eine Methode etabliert werden, mit der es möglich war, Oligomere durch eine Vernetzung mit BMH sichtbar zu machen. Um zeigen zu können, dass die Methode für Proteine an Mitochondrien geeignet war, wurden Bax-Oligomere an den Mitochondrien nachgewiesen. Mit der etablierten Methode konnten dann im Gesamtzellextrakt p53-Oligomere und –Monomere nachgewiesen werden, während p53 an den Mitochondrien unter gleichen Bedingungen nur als Monomer vorlag. Um die erhaltenen Ergebnisse zu bestätigen, wurden die Experimente mit einem weiteren Crosslinker (Glutaraldehyd) wiederholt. Auch in diesen Untersuchungen konnte p53 als Monomer an den Mitochondrien nachgewiesen werden. Um zeigen zu können, dass diese vorliegenden Ergebnisse nicht nur für HCT116 Zellen gültig sind, wurden die beschriebenen Untersuchungen in einer weiteren Zelllinie vorgenommen. Die Ergebnisse bewiesen, dass auch in MCF-7 Zellen p53 vorwiegend als Monomer an den Mitochondrien vorkommt.
|
3 |
Nucleoplasmic and Cytoplasmic Degradation of Telomerase: implications toward telomerase-based cancer therapyNguyen, Binh 20 March 2008 (has links)
Telomerase is a ribonucleoprotein that is reactivated in cancer cells to allow for continuous cellular division and indefinite growth. With telomerase being expressed in more than 85% of all cancer, it is imperative that we understand how to selectively inactivate and degrade this unique DNA polymerase. In doing so, we can specifically target tumor cells to erode their telomeres so that they will undergo apoptosis or senescence. Through this research, we have learned that telomerase can be degraded in the nucleoplasm by Hsp90 chaperone inhibition and in the cytoplasm by the dominant negative mutant, D712A V713I. These findings should guide future drug design to target sites on telomerase that interact with Hsp90 and catalytic divalent metal ions. Previous studies have shown that chaperones function to stabilize the RNP and that their inhibition results in ubiquitin-mediated degradation. However, a detailed understanding of how telomerase is signaled for degradation is not well defined. We showed that Hsp90 inhibition causes telomerase to be degraded by a nuclear ubiquitin/proteasome pathway such that exportation to the cytoplasm is not required. Using confocal fluorescence microscopy and immunoprecipitation /Western analysis, we showed that nucleoplasmic GFP-hTERT is ubiquinated and degraded within 2 hrs of exposure to the Hsp90 inhibitor, Radicicol. Upon combined treatment with the proteasome inhibitor, MG132, degradation is inhibited as shown by Western analysis and fluorescent intensity. Additionally, fluorescent pattern with inhibition of degradation shows telomerase aggregation and co-localization with the nuclear proteasome and not with nucleoli. However, the combined treatment with the exportin inhibitor, Leptomycin B, resulted in complete loss of fluorescence. Taken together, these data suggest that Hsp90 inhibition causes telomerase to immediately undergo nuclear degradation, which may function in the nuclear quality-control of telomerase. The dominant negative expression of telomerase has been shown by many investigators to cause shortening of telomeres. However, the mechanism of how it functions and its fate inside the cell are still unknown. After stably expressing the wild-type and dominant negative mutants GFPhTERT in cells, we show that the D712A V713I mutation causes the ubiquination and degradation of the mutant and wild-type hTERT which eventually leads to the shortening of telomeres. Degradation appears to be cytoplasmic since the additional mutation for the nuclear export signal (nes) and treatment with the exportation inhibitor are able to prevent the reduction in protein levels and fluorescence. Based on this cytoplasmic degradation and the additional co-localization of the GFPDNhTERT to the nucleoli, we propose two new mechanisms of dominant negative hTERT utilizing the theory of interactive dimerization. First, the heterodimer of DNhTERT : wt hTERT may be degraded at a faster rate than the wt hTERT homodimer. Second, the heterodimer may be sequestered in the nucleoli thus diminishing the wild-type hTERT access to the telomere in the nucleoplasm. Overall, we have shown that telomerase can be degraded in the nucleoplasm or cytoplasm depending on the mechanism of inhibition. The significance of this is a better understanding of how Hsp90 inhibition and dominant negative hTERT expression cause the degradation of wild-type hTERT. We have also suggested potential mechanisms of dominant-negative hTERT effect and resistance. With this knowledge, future drug therapies can be designed based on these inhibitors to not only inactivate but also to cause the degradation of an enzyme that is crucially important for the immortalization of cancer cells.
|
4 |
Blocking the MyD88-Dependent Pathway Protects the Myocardium From Ischemia/Reperfusion Injury in Rat HeartsHua, Fang, Ha, Tuanzhu, Ma, Jing, Gao, Xiang, Kelley, Jim, Williams, David L., Browder, I. William, Kao, Race L., Li, Chuanfu 16 December 2005 (has links)
We examined whether blocking the MyD88 mediated pathway could protect myocardium from ischemia/reperfusion (I/R) injury by transfecting Ad5-dnMyD88 into the myocardium of rats (n = 8) 3 days before the hearts were subjected to ischemia (45 min) and reperfusion (4 h). Ad5-GFP served as control (n = 8). One group of rats was (n = 8) subjected to I/R without transfection. Transfection of Ad5-dnMyD88 significantly reduced infarct size by 53.6% compared with the I/R group (15.1 ± 3.02 vs 32.5 ± 2.59) while transfection of Ad5-GFP did not affect I/R induced myocardial injury (35.4 ± 2.59 vs 32.5 ± 2.59). Transfection of Ad5-dnMyD88 significantly inhibited I/R-enhanced NFκB activity by 50% and increased the levels of phospho-Akt by 35.6% and BCL-2 by 81%, respectively. Cardiac myocyte apoptosis after I/R was significantly reduced by 59% in the Ad5-dnMyD88 group. The results demonstrate that both inhibition of the NFκB activation pathway and activation of the Akt signaling pathway may be responsible for the protective effect of transfection of dominant negative MyD88.
|
5 |
Untersuchungen zur Oligomerisierung des Mitochondrien-assoziierten Anteils des p53 TumorsuppressorproteinsSchmitt, Katrin 07 April 2009 (has links)
Ziel der vorliegenden Arbeit war es, die Quartärstruktur des Tumorsuppressors p53 an Mitochondrien zu untersuchen. In vorangegangenen Untersuchungen der Arbeitsgruppe konnte festgestellt werden, dass der transkriptionsunabhängige Apoptoseweg von p53 an den Mitochondrien resistent war gegenüber dominant-negativer Hemmung durch mutiertes p53. Dadurch stellte sich die Frage, welche Mechanismen für diese Resistenz verantwortlich sind. Unter den zahlreichen, denkbaren Möglichkeiten erschienen zwei als wahrscheinlich: a) Der Mechanismus, der p53 nach Stress an die Mitochondrien transloziert, ist spezifisch für Wildtyp-Homotetramer; b) mitochondriales p53 liegt als Monomer vor. Für das experimentelle Vorgehen wurden HCT116 Colon-Adenokarzinomzellen und MCF-7 Mamaadenokarzinomzellen verwendet, die beide einen intakten p53- Apoptoseweg besitzen. Zudem wurden HCT116R175HPuro und HCT116R273HPuro verwendet, um die Eigenschaften von mutiertem p53 an Mitochondrien untersuchen zu können. Aus den Zellen wurden die Mitochondrien isoliert, um dann die mitochondrialen Proteine durch die beiden Crosslinker Bismaleimidohexan (BMH) und Glutaraldehyd (GLD) zu vernetzen. Durch einen Western Blot wurden die Proteine voneinander getrennt und detektiert. In Voruntersuchungen konnte gezeigt werden, dass Wildtyp-p53 im Gesamtzellextrakt von HCT116 Zellen, ebenso wie die p53 Mutanten, sowohl als Monomer als auch als Oligomer vorkommt. Außerdem konnte eine Methode etabliert werden, mit der es möglich war, Oligomere durch eine Vernetzung mit BMH sichtbar zu machen. Um zeigen zu können, dass die Methode für Proteine an Mitochondrien geeignet war, wurden Bax-Oligomere an den Mitochondrien nachgewiesen. Mit der etablierten Methode konnten dann im Gesamtzellextrakt p53-Oligomere und –Monomere nachgewiesen werden, während p53 an den Mitochondrien unter gleichen Bedingungen nur als Monomer vorlag. Um die erhaltenen Ergebnisse zu bestätigen, wurden die Experimente mit einem weiteren Crosslinker (Glutaraldehyd) wiederholt. Auch in diesen Untersuchungen konnte p53 als Monomer an den Mitochondrien nachgewiesen werden. Um zeigen zu können, dass diese vorliegenden Ergebnisse nicht nur für HCT116 Zellen gültig sind, wurden die beschriebenen Untersuchungen in einer weiteren Zelllinie vorgenommen. Die Ergebnisse bewiesen, dass auch in MCF-7 Zellen p53 vorwiegend als Monomer an den Mitochondrien vorkommt.
|
6 |
TRUNCATIONS OF THE RESPONSE REGULATOR AGRA INHIBIT STAPHYLOCOCCUS AUREUS QUORUM SENSINGRuyter, Alexandra L. 25 September 2014 (has links)
<p>Virulence in <em>Staphylococcus aureus </em>is mediated by the <em>accessory gene regulator </em>(agr) quorum sensing system. This regulatory system is activated by a secreted thiolactone peptide termed autoinducing peptide (AIP) and its receptor histidine kinase, AgrC. Interaction of extracellular AIP with a cognate AgrC receptor generates an intracellular signal that is transduced by conformational changes and phosphorylation events in a two-component sensor histidine kinase system. At the heart of the <em>agr</em> quorum-sensing cascade lies the two-component histidine kinase, AgrC, and the response regulator protein, AgrA. Interaction of AgrC and AgrA, and the resulting phosphotransfer event results in expression from the divergent promoters P2 and P3, inducing expression of the master quorum-sensing regulator RNAIII and upregulating the <em>agr</em> operon respectively. Signal transduction systems function as intracellular information-processing pathways that link sensation of external stimuli to specific adaptive processes. In <em>S. aureus</em> , these include the up-regulation of virulence factors and hemolysis production, biofilm formation, and colonization-based regulation of surface proteins and adhesion factors. As such, the interactions of these systems have become key targets in the design of small inhibitor compounds.</p> <p>Through the creation of a protein truncation series, we proposed the development of a small protein for the inhibition of key protein-protein interactions involved in <em>S. aureus</em> <em>agr</em> two-component signaling. Herein, we demonstrate the efficacy of these protein truncations as dominant negative inhibitors of AgrC:AgrA interactions, likely acting as a dominant phosphoacceptor in place of endogenous AgrA. We provide evidence of this function through <em>in vitro </em>hemolysis assays and phosphate-detection based gel electrophoresis.</p> / Master of Science (MSc)
|
7 |
Utilisation de la levure S. cerevisiae pour déchiffrer les mécanismes de l'effet dominant-négatif affectant la famille de gènes suppresseurs de tumeurs p53, p63 et p73 / Using yeast S. cerevisiae to decipher the mechanisms of the dominant-negative effect observed within the p53, p63, p73 family of tumor suppressor genesBillant, Olivier 19 September 2016 (has links)
P53 est un gène suppresseur de tumeur ubiquitaire qui empêche la prolifération de cellules malignes chez l’humain. En réponse à des dommages à l’ADN ou à des stress cellulaires, p53 entraine l’arrêt du cycle cellulaire et initie la réparation des lésions du génome. Si ces réparations échouent, p53 déclenche alors la mort de la cellule endommagée par apoptose. De plus, p53 présente une forte homologie avec deux autres gènes suppresseurs de tumeur : p63 et p73. Ces trois protéines forment une famille de facteurs de transcription qui protège l’organisme contre le développement de tumeurs. Ce système de défense est enrichi par les multiples isoformes de p53, p63 et p73 dont les rôles sont encore mal décrits. La neutralisation de la fonction de suppression de tumeur de p53, p63 et p73 est un mécanisme clef du développement tumoral auquel participent les mutants hotspots de p53 ainsi que certaines isoformes de p53, p63 et p73 par un effet dominant-négatif. Toutefois, de nombreuses zones d’ombre limitent notre compréhension de ce phénomène. Tout d’abord, l’identification des membres de la famille de p53 impliqués dans l’effet dominant-négatif reste incomplète. Ensuite, les mécanismes responsables de l’effet dominant-négatif sont débattus, suite notamment à l’émergence d’une nouvelle hypothèse impliquant un mécanisme de type prion. Enfin, l’effet dominant-négatif de la famille de p53 pourrait également être mis en cause dans d’autres types de pathologies comme les syndromes développementaux associés à des mutations de p63. Au cours de cette thèse, j’ai étudié l’impact fonctionnel des mutations hotspots de p53 ainsi que celui des principales isoformes de la famille de p53 sur l’activité transcriptionnelle des isoformes actives de p53, p63 et p73. En utilisant comme modèle d’étude un eucaryote simple, la levure S. cerevisiae, nous avons pu démontrer que l’effet dominant-négatif des mutants et isoformes de la famille de p53 repose sur la formation d’hétéro-tétramères entre formes actives et inactives de ces protéines et n’implique pas de mécanisme de type prion. De plus nos travaux ont montré que certains mutants de p53 interfèrent avec les isoformes actives de p63 et p73 par un mécanisme partiellement basé sur la tétramérisation. En outre, nos résultats préliminaires suggèrent que les mutants de p63 impliqués dans les syndromes développementaux EEC, ADULT et NSCL1 exercent également un effet dominant-négatif similaire à celui des mutants de p53. L’identification des mécanismes de l’effet dominant-négatif observé au sein de la famille de p53 permet d’envisager de nouvelles cibles thérapeutiques tant dans les cancers que dans certaines maladies rares du développement humain. / P53 is a ubiquitous tumor suppressor gene that prevents damaged cells from proliferating. Following DNA damage or cellular stress, p53 induces a cell cycle arrest and initiates an attempt to repair the lesions. If the repair fails, p53 triggers the apoptosis of the cell. p53 shares a high homology with two other tumor suppressor genes: p63 and p73. Together they form a family of transcription factors, which are actively protecting the organism from tumor development. This defense network is enriched by multiple N-terminal and C-terminal isoforms of p53, p63 and p73. The loss of p53, p63 and p73 tumor suppression function is a key step of cancer progression. Mutants of p53 and isoforms of p53, p63 and p73 often exhibit a dominant-negative behavior resulting in the loss of p53 tumor suppression activity. However, the extent of the dominant-negative effect within p53 family remains unclear. The mechanisms behind the dominant-negative effect are also debated due to the recent emergence of a prion-like hypothesis. Finally, the dominant-negative effect of p53 family members could be involved in other pathologies such as p63-related developmental syndromes During this PhD, I studied the functional consequences of hotspot mutations of p53 and of the main isoforms of the p53 family on the transcriptional activity of p53, p63 and p73. Using the naïve eukaryotic model S. cerevisiae we have demonstrated that the dominant-negative effect of mutants and isoforms of the p53 family relies on the formation of hetero-tetramers between functional and non-functional members of the family but not on a prion-like mechanism. In addition, certain p53 mutants are able to interfere with p63 and p73 isoforms though a mechanism that is only partially based on tetramerization. Of note, we obtained preliminary results suggesting that mutants of p63, which are involved in EEC, ADULT and NSCL1 developmental syndromes, behave like dominant-negative hotspot mutants of p53. The identification of the mechanisms of the dominant-negative effect occurring within p53 family could lead to new therapeutic targets both in cancer and in rare developmental syndromes.1 EEC : ectrodactyly, ectodermal dysplasia and cleft lip/palate syndrome, ADULT : acro-dermato-ungual-lacrimal-tooth syndrome, NSCL : non-syndromic cleft lip
|
8 |
In Vitro-Generated Hypertrophic-Like Adipocytes Displaying PPARG Isoforms Unbalance Recapitulate Adipocyte Dysfunctions In VivoAprile, Marianna, Cataldi, Simona, Perfetto, Caterina, Ambrosio, Maria Rosaria, Italiani, Paola, Tatè, Rosarita, Blüher, Matthias, Ciccodicola, Alfredo, Costa, Valerio 17 April 2023 (has links)
Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Identifying molecular features of hypertrophic adipocytes requires appropriate in vitro models. We describe the generation of a model of human hypertrophic-like adipocytes directly comparable to normal adipose cells and the pathologic evolution toward hypertrophic state. We generate in vitro hypertrophic cells from mature adipocytes, differentiated from human mesenchymal stem cells. Combining optical, confocal, and transmission electron microscopy with mRNA/protein quantification, we characterize this cellular model, confirming specific alterations also in subcutaneous adipose tissue. Specifically, we report the generation and morphological/molecular characterization of human normal and hypertrophic-like adipocytes. The latter displays altered morphology and unbalance between canonical and dominant negative (PPARGΔ5) transcripts of PPARG, paralleled by reduced expression of PPARγ targets, including GLUT4. Furthermore, the unbalance of PPARγ isoforms associates with GLUT4 down-regulation in subcutaneous adipose tissue of individuals with overweight/obesity or impaired glucose tolerance/type 2 diabetes, but not with normal weight or glucose tolerance. In conclusion, the hypertrophic-like cells described herein are an innovative tool for studying molecular dysfunctions in hypertrophic obesity and the unbalance between PPARγ isoforms associates with down-regulation of GLUT4 and other PPARγ targets, representing a new hallmark of hypertrophic adipocytes.
|
Page generated in 0.1951 seconds