• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 133
  • 66
  • 43
  • 38
  • 20
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 777
  • 171
  • 103
  • 97
  • 92
  • 84
  • 76
  • 76
  • 64
  • 62
  • 60
  • 59
  • 57
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

NMR study of heavily doped Si:B

Fuller, Scott E. 29 September 1994 (has links)
Graduation date: 1995
32

Design, fabrication and characterization of a complementary GaAs MODFET structure

Dang, Yen 14 October 1993 (has links)
Graduation date: 1994
33

HEMT-compatible laser diodes

Eliason, Garth W. 10 March 1994 (has links)
Graduation date: 1994
34

Processing and characterization of advanced AlGaN/GaN heterojunction effect transistors

Lee, Jaesun, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 159-164).
35

Aluminum Doped Zinc Oxide Thin Film for Organic Photovoltaics

Wei, Fanjie 28 July 2010 (has links)
Aluminum Doped Zinc Oxide (AZO) produced by radio frequency (RF) magnetron sputtering is thought to be the prospective replacement of the de facto standard indium tin oxide (ITO) anode in organic solar cells. In order to achieve a proper resistivity and transmittance of AZO thin film compared to ITO, a systematic study was done to optimize the sputtering conditions. In this work, two primary parameters: target-substrate distance and sputtering power, were optimized, and a optimized film thickness was determined. A poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk-heterojunction organic solar cell was fabricated based on the optimized parameters and the power conversion efficiency reached 0.83%. A theoretical analysis is given to explain the optimization process. This work provides a clear pathway to substitute AZO for ITO in organic solar cells for future mass production.
36

Aluminum Doped Zinc Oxide Thin Film for Organic Photovoltaics

Wei, Fanjie 28 July 2010 (has links)
Aluminum Doped Zinc Oxide (AZO) produced by radio frequency (RF) magnetron sputtering is thought to be the prospective replacement of the de facto standard indium tin oxide (ITO) anode in organic solar cells. In order to achieve a proper resistivity and transmittance of AZO thin film compared to ITO, a systematic study was done to optimize the sputtering conditions. In this work, two primary parameters: target-substrate distance and sputtering power, were optimized, and a optimized film thickness was determined. A poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk-heterojunction organic solar cell was fabricated based on the optimized parameters and the power conversion efficiency reached 0.83%. A theoretical analysis is given to explain the optimization process. This work provides a clear pathway to substitute AZO for ITO in organic solar cells for future mass production.
37

Electrical characterization of n-type aluminum gallium arsenide

Kim, Seung-bae 11 July 1991 (has links)
Graduation date: 1992
38

The Characteristics of AZO/Ag-Ti/AZO Multilayer Films

You, Chieh-chun 23 August 2010 (has links)
In this study, the tansparent conductive oxide (TCO) multilayer film AZO/Ag-Ti/AZO was fabricated with Ag-Ti alloy as conducting layer and AZO as anti-reflective material. The metal alloy was deposited by DC magnetron sputtering, and the AZO film deposition was performed by spin-coating technique and dried at suitable temperature. The thicknesses of Ag-Ti and AZO thin films were varied to fabricate AZO/Ag-Ti/AZO multilayer films. The microstructures of the multilayer films were observed by SEM and AFM. Sheet resistance was measured by using four-point probe. Optical transmittance was measured in the visible range by uv-vis spectrophotometer. The results show that as the top of AZO thickness is 50 nm, intermediate Ag-Ti metal laminated to 9 nm, and the bottom of the AZO is 35 nm, the transmittance of multilayer film AZO/Ag-Ti/AZO can reach 78.92%, and the sheet resistance is 1.86£[/¡¼. When thermal annealing process was carried out to the bottom AZO film, the worse characteristics of the transmittance and resistance of the performed multilayer film were resulted.
39

Study on the electrodeposition parameters of the growth DLC thin film

Chiou, Yu-Ren 26 July 2011 (has links)
In this study, DLC thin films were electrodeposited at low DC potential using a mixture of acetic acid and DI water with different ratio. The parameters of DLC thin film deposition include the DC potential, deposition temperature, concentration of electrolyte solution, were correlated to the growth mechanism. The amount of nitrogen incorporated into DLC thin films were varied with the deposited temperature. The characteristics of DLC films by various measurements such as : the I-t curves of DLC film growth, SEM, AFM, FTIR, XPS, Raman and N&K spectroscopy, were investigated in detail. Experimental results showed that the surface roughness decreased, and sp3/sp2+sp3 value of DLC increased with the deposition temperature and deposition time. Optical properties showed that the refractive index, optical energy gap increased with the deposition temperature. For SEM cross-section measurement, it showed that the thickness of DLC films decreased due to the erosion process. However, the N-DLC films become graphitization. According to our study, we find that the surface morphology of the N-DLC films are homogeneous and compact. However, with the increase of the deposition temperature, the ratio of sp3-C-N bonds increase and the ratio of sp2-C-C bonds decrease, and these lead to the increase of refractive index and optical energy gap.
40

The Effect of TiO2 and K2O on Optical Property and Laser-induced Crystallization in Cr-doped silica-based Glass and Glass-ceramics

Chen, Yu-Chia 30 August 2012 (has links)
This thesis mainly studying the impact of TiO2 and K2O these two compounds in the Chromium-doped glasses and glass-ceramics. Due to the method of Modified Chemical Vapor Deposition (MCVD) of Chromium-doped fiber preform production process, the Ti and K elements have some difficulties; thus, we discuss the influences of these two elements. We hope to improve the composition after knowing these two elements, in order to make the Chromium-doped fiber preform well. We change the weight percent of TiO2 and K2O in the glass composition, in order to observe the influences. Then, we measure their optical and material properties. The results of experiments show that the well-known nucleation agent: TiO2, have no effect of the crystalline phase. However, its function is to help the formation of crystals. We can conclude by the results of X-ray Diffraction (XRD). K2O plays an important role of the Mg2SiO4 phase. To add K2O or not, is the most important reason to affect the Mg2SiO4 phase formation. We will discuss in detail in this thesis about the phase difference for the fluorescence characteristics of Chromium-doped glass and glass-ceramics. What¡¦s more, we use the previously developed two times laser heat-treatment, hoping to successfully apply for Chromium-doped fiber drawing in the future. The laser heat-treatment of CO2-laser can induce the crystal in the glasses. However, this method only needs just a few seconds, which can reduce the cost of heat-treatment. In addition, we can reduce the crystalline size by using the method of two times laser heat-treatment, which can decrease the scattering loss. Also, we will discuss the impact of laser heat-treatment after changing the composition.

Page generated in 0.0266 seconds