Spelling suggestions: "subject:"dos mimicking"" "subject:"done mimicking""
1 |
Clinical dose feature extraction for prediction of dose mimicking parameters / Extrahering av features från kliniska dosbilder för prediktion av doshärmande parametrarFinnson, Anton January 2021 (has links)
Treating cancer with radiotherapy requires precise planning. Several planning pipelines rely on reference dose mimicking, where one tries to find machine parameters best mimicking a given reference dose. Dose mimicking relies on having a function that quantifies dose similarity well, necessitating methods for feature extraction of dose images. In this thesis we investigate ways of extracting features from clinical doseimages, and propose a few proof-of-concept dose mimicking functions using the extracted features. We extend current techniques and lay the foundation for new techniques for feature extraction, using mathematical frameworks developed in entirely different areas. In particular we give an introduction to wavelet theory, which provides signal decomposition techniques suitable for analysing local structure, and propose two different dose mimicking functions using wavelets. Furthermore, we extend ROI-based mimicking functions to use artificial ROIs, and we investigate variational autoencoders and their application to the clinical dose feature extraction problem. We conclude that the proposed functions have the potential to address certain shortcomings of current dose mimicking functions. The four methods all seem to approximately capture some notion of dose similarity. Used in combination with the current framework they have the potential of improving dose mimickingresults. However, the numerical tests supporting this are brief, and more thorough numerical investigations are necessary to properly evaluate the usefulness of the new dose mimicking functions. / Behandling av cancer med strålterapi kräver precis planering. Flera olika planeringsramverk bygger på doshärmning, som innebär att hitta de maskinparametrar som bäst härmar en given referensdos. För doshärmning behövs en funktion som kvantifierar likheten mellan två doser, vilket kräver ett sätt att extrahera utmärkande egenskaper – så kallade features – från dosbilder. I det här examensarbetet undersöker vi olika matematiska metoder för att extrahera features från kliniska dosbilder, och presenterar några olika förslag på prototyper till doshärmningsfunktioner, konstruerade utifrån extraherade features. Vi utvidgar nuvarande tekniker och lägger grunden för nya tekniker genom att använda matematiska ramverk utvecklade för helt andra syften. Speciellt så ger vi en introduktion till wavelet-teori, som ger matematiska verktyg för att analysera lokala beteenden hos signaler, exempelvis bilder. Vi föreslår två olika doshärmningsfunktioner som utnyttjar wavelets, och utvidgar ROI-baseraddoshärmning genom att introducera artificiella ROIar. Vidare så undersökervi så kallade variational autoencoders och möjligheten att använda dessa för extrahering av features från dosbilder. Vi kommer fram till att de föreslagna funktionerna har potential att åtgärda vissa begränsningar som finns hos de doshärmningsfunktioner som används idag. De fyra metoderna verkar alla approximativt kvantifiera begreppet doslikhet. Användning av dessa nya metoder i kombination med nuvarande ramverk för doshärmning har potential att förbättra resultaten från doshärmning. De numeriska undersökningar som underbygger dessa slutsatser är dock inte särskilt ingående, så mer noggranna numeriska tester krävs för att kunna ge några definitiva svar angående de presenterade doshärmningsfunktionernas användbarhet ipraktiken.
|
2 |
Scenario dose prediction for robust automated treatment planning in radiation therapy / Scenariodosprediktion för robust automatisk strålterapiplaneringEriksson, Oskar January 2021 (has links)
Cancer is a group of diseases that are characterized by abnormal cell growth and is considered a leading cause of death globally. There are a number of different cancer treatment modalities, one of which is radiation therapy. In radiation therapy treatment planning, it is important to make sure that enough radiation is delivered to the tumor and that healthy organs are spared, while also making sure to account for uncertainties such as misalignment of the patient during treatment. To reduce the workload on clinics, data-driven automated treatment planning can be used to generate treatment plans for new patients based on previously delivered plans. In this thesis, we propose a novel method for robust automated treatment planning where a deep learning model is trained to deform a dose in accordance with a set of potential scenarios that account for the different uncertainties while maintaining certain statistical properties of the input dose. The predicted scenario doses are then used in a robust optimization problem with the goal of finding a treatment plan that is robust to these uncertainties. The results show that the proposed method for deforming doses yields realistic doses of high quality and that the proposed pipeline can potentially generate doses that conform better to the target than the current state of the art but at the cost of dose homogeneity. / Cancer är ett samlingsnamn för sjukdomar som karaktäriseras av onormal celltillväxt och betraktas som en ledande dödsorsak globalt. Det finns olika typer av cancerbehandling, varav en är strålterapi. Inom strålterapiplanering är det viktigt att säkerställa att tillräckligt med strålning ges till tumören, att friska organ skonas, och att osäkerheter som felplacering av patienten under behandlingen räknas med. För att minska arbetsbelastningen på kliniker används data-driven automatisk strålterapiplanering för att generera behandlingsplaner till nya patienter baserat på tidigare levererade behandlingar. I denna uppsats föreslår vi en ny metod för robust automatisk strålterapiplanering där en djupinlärningsmodell tränas till att deformera en dos i enlighet med en mängd potentiella scenarion som motsvarar de olika osäkerheterna medan vissa statistiska egenskaper bibehålls från originaldosen. De predicerade scenariodoserna används sedan i ett robust optimeringsproblem där målet är att hitta en behandlingsplan som är robust mot dessa osäkerheter. Resultaten visar att den föreslagna metoden för dosdeformation ger realistiska doser av hög kvalitet, vilket i sin tur kan leda till robusta doser med högre doskonformitet än tidigare metoder men på bekostnad av doshomogenitet.
|
3 |
Machine learning multicriteria optimization in radiation therapy treatment planning / Flermålsoptimering med maskininlärning inom strålterapiplaneringZhang, Tianfang January 2019 (has links)
In radiation therapy treatment planning, recent works have used machine learning based on historically delivered plans to automate the process of producing clinically acceptable plans. Compared to traditional approaches such as repeated weighted-sum optimization or multicriteria optimization (MCO), automated planning methods have, in general, the benefits of low computational times and minimal user interaction, but on the other hand lack the flexibility associated with general-purpose frameworks such as MCO. Machine learning approaches can be especially sensitive to deviations in their dose prediction due to certain properties of the optimization functions usually used for dose mimicking and, moreover, suffer from the fact that there exists no general causality between prediction accuracy and optimized plan quality.In this thesis, we present a means of unifying ideas from machine learning planning methods with the well-established MCO framework. More precisely, given prior knowledge in the form of either a previously optimized plan or a set of historically delivered clinical plans, we are able to automatically generate Pareto optimal plans spanning a dose region corresponding to plans which are achievable as well as clinically acceptable. For the former case, this is achieved by introducing dose--volume constraints; for the latter case, this is achieved by fitting a weighted-data Gaussian mixture model on pre-defined dose statistics using the expectation--maximization algorithm, modifying it with exponential tilting and using specially developed optimization functions to take into account prediction uncertainties.Numerical results for conceptual demonstration are obtained for a prostate cancer case with treatment delivered by a volumetric-modulated arc therapy technique, where it is shown that the methods developed in the thesis are successful in automatically generating Pareto optimal plans of satisfactory quality and diversity, while excluding clinically irrelevant dose regions. For the case of using historical plans as prior knowledge, the computational times are significantly shorter than those typical of conventional MCO. / Inom strålterapiplanering har den senaste forskningen använt maskininlärning baserat på historiskt levererade planer för att automatisera den process i vilken kliniskt acceptabla planer produceras. Jämfört med traditionella angreppssätt, såsom upprepad optimering av en viktad målfunktion eller flermålsoptimering (MCO), har automatiska planeringsmetoder generellt sett fördelarna av lägre beräkningstider och minimal användarinteraktion, men saknar däremot flexibiliteten hos allmänna ramverk som exempelvis MCO. Maskininlärningsmetoder kan vara speciellt känsliga för avvikelser i dosprediktionssteget på grund av särskilda egenskaper hos de optimeringsfunktioner som vanligtvis används för att återskapa dosfördelningar, och lider dessutom av problemet att det inte finns något allmängiltigt orsakssamband mellan prediktionsnoggrannhet och kvalitet hos optimerad plan. I detta arbete presenterar vi ett sätt att förena idéer från maskininlärningsbaserade planeringsmetoder med det väletablerade MCO-ramverket. Mer precist kan vi, givet förkunskaper i form av antingen en tidigare optimerad plan eller en uppsättning av historiskt levererade kliniska planer, automatiskt generera Paretooptimala planer som täcker en dosregion motsvarande uppnåeliga såväl som kliniskt acceptabla planer. I det förra fallet görs detta genom att introducera dos--volym-bivillkor; i det senare fallet görs detta genom att anpassa en gaussisk blandningsmodell med viktade data med förväntning--maximering-algoritmen, modifiera den med exponentiell lutning och sedan använda speciellt utvecklade optimeringsfunktioner för att ta hänsyn till prediktionsosäkerheter.Numeriska resultat för konceptuell demonstration erhålls för ett fall av prostatacancer varvid behandlingen levererades med volymetriskt modulerad bågterapi, där det visas att metoderna utvecklade i detta arbete är framgångsrika i att automatiskt generera Paretooptimala planer med tillfredsställande kvalitet och variation medan kliniskt irrelevanta dosregioner utesluts. I fallet då historiska planer används som förkunskap är beräkningstiderna markant kortare än för konventionell MCO.
|
4 |
Image Distance Learning for Probabilistic Dose–Volume Histogram and Spatial Dose Prediction in Radiation Therapy Treatment Planning / Bilddistansinlärning för probabilistisk dos–volym-histogram- och dosprediktion inom strålbehandlingEriksson, Ivar January 2020 (has links)
Construction of radiotherapy treatments for cancer is a laborious and time consuming task. At the same time, when presented with a treatment plan, an oncologist can quickly judge whether or not it is suitable. This means that the problem of constructing these treatment plans is well suited for automation. This thesis investigates a novel way of automatic treatment planning. The treatment planning system this pipeline is constructed for provides dose mimicking functionality with probability density functions of dose–volume histograms (DVHs) and spatial dose as inputs. Therefore this will be the output of the pipeline. The input is historically treated patient scans, segmentations and spatial doses. The approach involves three modules which are individually replaceable with little to no impact on the remaining two modules. The modules are: an autoencoder as a feature extractor to concretise important features of a patient segmentation, a distance optimisation step to learn a distance in the previously constructed feature space and, finally, a probabilistic spatial dose estimation module using sparse pseudo-input Gaussian processes trained on voxel features. Although performance evaluation in terms of clinical plan quality was beyond the scope of this thesis, numerical results show that the proposed pipeline is successful in capturing salient features of patient geometry as well as predicting reasonable probability distributions for DVH and spatial dose. Its loosely connected nature also gives hope that some parts of the pipeline can be utilised in future work. / Skapandet av strålbehandlingsplaner för cancer är en tidskrävande uppgift. Samtidigt kan en onkolog snabbt fatta beslut om en given plan är acceptabel eller ej. Detta innebär att uppgiften att skapa strålplaner är väl lämpad för automatisering. Denna uppsats undersöker en ny metod för att automatiskt generera strålbehandlingsplaner. Planeringssystemet denna metod utvecklats för innehåller funktionalitet för dosrekonstruktion som accepterar sannolikhetsfördelningar för dos–volymhistogram (DVH) och dos som input. Därför kommer detta att vara utdatan för den konstruerade metoden. Metoden är uppbyggd av tre beståndsdelar som är individuellt utbytbara med liten eller ingen påverkan på de övriga delarna. Delarna är: ett sätt att konstruera en vektor av kännetecken av en patients segmentering, en distansoptimering för att skapa en distans i den tidigare konstruerade känneteckensrymden, och slutligen en skattning av sannolikhetsfördelningar med Gaussiska processer tränade på voxelkännetecken. Trots att utvärdering av prestandan i termer av klinisk plankvalitet var bortom räckvidden för detta projekt uppnåddes positiva resultat. De estimerade sannolikhetsfördelningarna uppvisar goda karaktärer för både DVHer och doser. Den löst sammankopplade strukturen av metoden gör det dessutom möjligt att delar av projektet kan användas i framtida arbeten.
|
Page generated in 0.1009 seconds