• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acoplamento Kondo-Majorana em pontos quânticos duplos / Kondo-Majorana coupling in double quantum dots

Pardo, Jesus David Cifuentes 08 May 2019 (has links)
O uso das quasi-particulas de Majorana que emergem nas bordas de um supercondutor topológico é uma plataforma promisora para computação quântica. Novas propostas usam quantum dots (QDs) para detectar sinais de Majorana. Este método tem duas vantagens: 1) Os QDs são os melhores dispositivos para estudar a co-existência de Kondo e Majorana, a qual têm sido reportada recentemente em experimentos. 2) O controle experimental preciso sobre os quantum dots que temos hoje em dia oferece a oportunidade única para manipular quasi-partículas de Majoranas dentro de sistemas com vários dots. Esta ideia abriu novos caminhos para o desenho de arquiteturas quânticas, nos aproximando do objetivo de implementar um computador quântico topológico. O caso mais simples em que se é possível manipular tais quasi-partículas é num quantum dot duplo (DQD). Este modelo oferece várias possibilidades para mover os Majoranas, incluindo múltiplas configurações geométricas dos dots como acoplamentos simétricos, lineares e em junções T. Neste trabalho vamos apresentar uma análise teórica das transiç?s dos sinais de Majorana dentro do DQD em sistemas interagentes e não interagentes. Vamos ver que é possível controlar a localização dos modos zero de Majorana mediante o incremento nas voltagens de gate dos QDs. Também vamos explorar como esses sinais interagem com o efeito Kondo que emerge em superposição com o modo zero de Majorana. Principalmente, vamos a usar dois métodos neste projecto: 1) Usamos as equações de movimento no formalismo de funções de Green para obter expressões exatas para a densidade de estados em sistemas não interagentes. Vamos apresentar o método the eliminação de Gauss-Jordan com grafos, o qual permite resolver rapidamente o sistema linear emergente nas equações de movimento. 2) Em sistemas Coulomb interagentes usamos NRG, no qual poderemos observar a interação entre o Majorana e o efeito Kondo. Vamos testar ambos os métodos nos modelos de um double quantum dot e um QD acoplado com uma cadeia de Majorana, com o qual vamos reproduzir os resultados presentes na literatura. Finalmente, incluímos a maior contribuição deste trabalho, o estudo de um DQD acoplado a uma cadeia de Majorana. / Majorana zero modes (MZMs) emerging at the edges of topological superconducting wires are a promising platform for fault-tolerant quantum computation. Novel proposals use quantum dots (QDs) coupled to the end of these wires to detect Majorana signatures. This detection method provides the following advantages: 1) This device allows to study the prospective coexistence of Kondo-Majorana signatures, which have been recently reported in experiments. 2) Today\'s precise experimental control over QDs offers the unique possibility of manipulating MZMs inside multi-dot systems. This innovative idea has enlightened the design of scalable quantum architectures, bringing us closer to the implementation of a topological quantum computer. The simplest case where Majorana manipulation is possible is in a double quantum dot (DQD). This system offers several possibilities for manipulation of MZMs, including different geometric configurations of the dots, from symmetric and linear couplings to T-dot junctions. In this project, we perform a theoretical study of the transitions of the Majorana signature in these geometries in non-interacting and interacting regimes. By tuning the dot\'s gate voltages, we will show that it is possible to control the localization of the MZM inside both dots. We will also explore the interplay of these signatures with the Kondo effect, which emerges in non-interacting dots in superposition with the MZM. We adopt two methods in this project: 1) The Green equations of motion (EOM) allow us to obtain exact expressions for the density of states in coulomb-non-interacting systems. We present the Graph -Gauss-Jordan elimination process as a simple-graphical method to solve the emergent linear systems in the EOM. 2) We use Wilson\'s numerical renormalization group (NRG) in interacting systems, to study the combined Kondo-Majorana physics. We will test these methods, first in a double quantum dot (DQD) (chapter 3) and then in a QD-Majorana model (chapter 4), where we confirm the results of previous papers [1-3]. Finally, we include the main contribution of this thesis, the study of a DQD coupled to a Majorana chain (chapter 5).
2

WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot

Platt, Edward January 2008 (has links)
A simplified model of a double quantum dot is presented and analyzed, with applications to spin-qubit quantum computation. The ability to trap single electrons in semiconductor nanostructures has led to the proposal of quantum computers with spin-based qubits coupled by the exchange interaction. Current theory predicts an exchange interaction with a -1 power-law dependence on the detuning ϵ, the energy offset between the two dots. However, experiment has shown a -3/2 power-law dependence on ϵ. Using WKB analysis, this thesis explores one possible source of the modified dependence, namely an ϵ-dependent tunnel coupling between the two wells. WKB quantization is used to find expressions for the tunnel coupling of a one-dimensional double-well, and these results are compared to the exact, numerical solutions, as determined by the finite difference method and the transfer matrix method. Small ϵ-dependent corrections to the tunnel coupling are observed. In typical cases, WKB correctly predicts a constant tunnel coupling at leading-order. WKB also predicts small ϵ-dependent corrections for typical cases and strongly ϵ-dependent tunnel couplings for certain exceptional cases. However, numerical simulations suggest that WKB is not accurate enough to analyze the small corrections, and is not valid in the exceptional cases. Deviations from the conventional form of the low-energy Hamiltonian for a double-well are also observed and discussed.
3

WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot

Platt, Edward January 2008 (has links)
A simplified model of a double quantum dot is presented and analyzed, with applications to spin-qubit quantum computation. The ability to trap single electrons in semiconductor nanostructures has led to the proposal of quantum computers with spin-based qubits coupled by the exchange interaction. Current theory predicts an exchange interaction with a -1 power-law dependence on the detuning ϵ, the energy offset between the two dots. However, experiment has shown a -3/2 power-law dependence on ϵ. Using WKB analysis, this thesis explores one possible source of the modified dependence, namely an ϵ-dependent tunnel coupling between the two wells. WKB quantization is used to find expressions for the tunnel coupling of a one-dimensional double-well, and these results are compared to the exact, numerical solutions, as determined by the finite difference method and the transfer matrix method. Small ϵ-dependent corrections to the tunnel coupling are observed. In typical cases, WKB correctly predicts a constant tunnel coupling at leading-order. WKB also predicts small ϵ-dependent corrections for typical cases and strongly ϵ-dependent tunnel couplings for certain exceptional cases. However, numerical simulations suggest that WKB is not accurate enough to analyze the small corrections, and is not valid in the exceptional cases. Deviations from the conventional form of the low-energy Hamiltonian for a double-well are also observed and discussed.

Page generated in 0.0697 seconds