• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bose-Einstein condensates in coupled co-planar double-ring traps : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Science in Physics at Massey University, Palmerston North, New Zealand

Haigh, Tania J January 2008 (has links)
This thesis presents a theoretical study of Bose-Einstein condensates in a doublering trap. In particular, we determine the ground states of the condensate in the double-ring trap that arise from the interplay of quantum tunnelling and the trap’s rotation. The trap geometry is a concentric ring system, where the inner ring is of smaller radius than the outer ring and both lie in the same two-dimensional plane. Due to the difference in radii between the inner and outer rings, the angular momentum that minimises the kinetic energy of a condensate when confined in the individual rings is different at most frequencies. This preference is in direct competition with the tunnel coupling of the rings which favours the same angular momentum states being occupied in both rings. Our calculations show that at low tunnel coupling ground state solutions exist where the expectation value of angular momentum per atom in each ring differs by approximately an integer multiple. The energy of these solutions is minimised by maintaining a uniform phase difference around most of the ring, and introducing a Josephson vortex between the inner and outer rings. A Josephson vortex is identified by a 2p step in the relative phase between the two rings, and accounts for one quantum of circulation. We discuss similarities and differences between Josephson vortices in cold-atom systems and in superconducting Josephson junctions. Josephson vortices are actuated by a sudden change in the trapping potential. After this change Josephson vortices rotate around the double-ring system at a different frequency to the rotation of the double-ring potential. Numerical studies of the dependence of the velocity on the ground state tunnel coupling and interaction strength are presented. An analytical theory of the Josephson vortex dynamics is also presented which is consistent with our numerical results.
2

WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot

Platt, Edward January 2008 (has links)
A simplified model of a double quantum dot is presented and analyzed, with applications to spin-qubit quantum computation. The ability to trap single electrons in semiconductor nanostructures has led to the proposal of quantum computers with spin-based qubits coupled by the exchange interaction. Current theory predicts an exchange interaction with a -1 power-law dependence on the detuning ϵ, the energy offset between the two dots. However, experiment has shown a -3/2 power-law dependence on ϵ. Using WKB analysis, this thesis explores one possible source of the modified dependence, namely an ϵ-dependent tunnel coupling between the two wells. WKB quantization is used to find expressions for the tunnel coupling of a one-dimensional double-well, and these results are compared to the exact, numerical solutions, as determined by the finite difference method and the transfer matrix method. Small ϵ-dependent corrections to the tunnel coupling are observed. In typical cases, WKB correctly predicts a constant tunnel coupling at leading-order. WKB also predicts small ϵ-dependent corrections for typical cases and strongly ϵ-dependent tunnel couplings for certain exceptional cases. However, numerical simulations suggest that WKB is not accurate enough to analyze the small corrections, and is not valid in the exceptional cases. Deviations from the conventional form of the low-energy Hamiltonian for a double-well are also observed and discussed.
3

WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot

Platt, Edward January 2008 (has links)
A simplified model of a double quantum dot is presented and analyzed, with applications to spin-qubit quantum computation. The ability to trap single electrons in semiconductor nanostructures has led to the proposal of quantum computers with spin-based qubits coupled by the exchange interaction. Current theory predicts an exchange interaction with a -1 power-law dependence on the detuning ϵ, the energy offset between the two dots. However, experiment has shown a -3/2 power-law dependence on ϵ. Using WKB analysis, this thesis explores one possible source of the modified dependence, namely an ϵ-dependent tunnel coupling between the two wells. WKB quantization is used to find expressions for the tunnel coupling of a one-dimensional double-well, and these results are compared to the exact, numerical solutions, as determined by the finite difference method and the transfer matrix method. Small ϵ-dependent corrections to the tunnel coupling are observed. In typical cases, WKB correctly predicts a constant tunnel coupling at leading-order. WKB also predicts small ϵ-dependent corrections for typical cases and strongly ϵ-dependent tunnel couplings for certain exceptional cases. However, numerical simulations suggest that WKB is not accurate enough to analyze the small corrections, and is not valid in the exceptional cases. Deviations from the conventional form of the low-energy Hamiltonian for a double-well are also observed and discussed.
4

Bose-Einstein condensates in coupled co-planar double-ring traps : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Science in Physics at Massey University, Palmerston North, New Zealand

Haigh, Tania J January 2008 (has links)
This thesis presents a theoretical study of Bose-Einstein condensates in a doublering trap. In particular, we determine the ground states of the condensate in the double-ring trap that arise from the interplay of quantum tunnelling and the trap’s rotation. The trap geometry is a concentric ring system, where the inner ring is of smaller radius than the outer ring and both lie in the same two-dimensional plane. Due to the difference in radii between the inner and outer rings, the angular momentum that minimises the kinetic energy of a condensate when confined in the individual rings is different at most frequencies. This preference is in direct competition with the tunnel coupling of the rings which favours the same angular momentum states being occupied in both rings. Our calculations show that at low tunnel coupling ground state solutions exist where the expectation value of angular momentum per atom in each ring differs by approximately an integer multiple. The energy of these solutions is minimised by maintaining a uniform phase difference around most of the ring, and introducing a Josephson vortex between the inner and outer rings. A Josephson vortex is identified by a 2p step in the relative phase between the two rings, and accounts for one quantum of circulation. We discuss similarities and differences between Josephson vortices in cold-atom systems and in superconducting Josephson junctions. Josephson vortices are actuated by a sudden change in the trapping potential. After this change Josephson vortices rotate around the double-ring system at a different frequency to the rotation of the double-ring potential. Numerical studies of the dependence of the velocity on the ground state tunnel coupling and interaction strength are presented. An analytical theory of the Josephson vortex dynamics is also presented which is consistent with our numerical results.
5

Bose-Einstein condensates in coupled co-planar double-ring traps : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Science in Physics at Massey University, Palmerston North, New Zealand

Haigh, Tania J January 2008 (has links)
This thesis presents a theoretical study of Bose-Einstein condensates in a doublering trap. In particular, we determine the ground states of the condensate in the double-ring trap that arise from the interplay of quantum tunnelling and the trap’s rotation. The trap geometry is a concentric ring system, where the inner ring is of smaller radius than the outer ring and both lie in the same two-dimensional plane. Due to the difference in radii between the inner and outer rings, the angular momentum that minimises the kinetic energy of a condensate when confined in the individual rings is different at most frequencies. This preference is in direct competition with the tunnel coupling of the rings which favours the same angular momentum states being occupied in both rings. Our calculations show that at low tunnel coupling ground state solutions exist where the expectation value of angular momentum per atom in each ring differs by approximately an integer multiple. The energy of these solutions is minimised by maintaining a uniform phase difference around most of the ring, and introducing a Josephson vortex between the inner and outer rings. A Josephson vortex is identified by a 2p step in the relative phase between the two rings, and accounts for one quantum of circulation. We discuss similarities and differences between Josephson vortices in cold-atom systems and in superconducting Josephson junctions. Josephson vortices are actuated by a sudden change in the trapping potential. After this change Josephson vortices rotate around the double-ring system at a different frequency to the rotation of the double-ring potential. Numerical studies of the dependence of the velocity on the ground state tunnel coupling and interaction strength are presented. An analytical theory of the Josephson vortex dynamics is also presented which is consistent with our numerical results.
6

Bose-Einstein condensates in coupled co-planar double-ring traps : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Science in Physics at Massey University, Palmerston North, New Zealand

Haigh, Tania J January 2008 (has links)
This thesis presents a theoretical study of Bose-Einstein condensates in a doublering trap. In particular, we determine the ground states of the condensate in the double-ring trap that arise from the interplay of quantum tunnelling and the trap’s rotation. The trap geometry is a concentric ring system, where the inner ring is of smaller radius than the outer ring and both lie in the same two-dimensional plane. Due to the difference in radii between the inner and outer rings, the angular momentum that minimises the kinetic energy of a condensate when confined in the individual rings is different at most frequencies. This preference is in direct competition with the tunnel coupling of the rings which favours the same angular momentum states being occupied in both rings. Our calculations show that at low tunnel coupling ground state solutions exist where the expectation value of angular momentum per atom in each ring differs by approximately an integer multiple. The energy of these solutions is minimised by maintaining a uniform phase difference around most of the ring, and introducing a Josephson vortex between the inner and outer rings. A Josephson vortex is identified by a 2p step in the relative phase between the two rings, and accounts for one quantum of circulation. We discuss similarities and differences between Josephson vortices in cold-atom systems and in superconducting Josephson junctions. Josephson vortices are actuated by a sudden change in the trapping potential. After this change Josephson vortices rotate around the double-ring system at a different frequency to the rotation of the double-ring potential. Numerical studies of the dependence of the velocity on the ground state tunnel coupling and interaction strength are presented. An analytical theory of the Josephson vortex dynamics is also presented which is consistent with our numerical results.

Page generated in 0.0682 seconds