Spelling suggestions: "subject:"doublewell"" "subject:"doubleshell""
1 |
Vibrational Energies of the Hydrogen Bonds of H₃O₂⁻ and H₅O₂⁺Gamble, Stephanie Nicole 24 June 2016 (has links)
We approximate the vibrational energies of the symmetric and asymmetric stretches of the hydrogen bonds of the molecules H_3O_2^- and H_5O_2^+ by applying an improvement to the standard time-independent Born-Oppenheimer approximation. These two molecules are symmetric around a central hydrogen which participates in hydrogen bonding. Unlike the standard Born-Oppenheimer approximation, this approximation appropriately scales the hydrogen nuclei differently than the heavier oxygen nuclei. This results in significantly more accurate approximations for the stretching vibrational energies, which we compare to experimental measurements. / Master of Science
|
2 |
Unveiling the double-well energy landscape in a ferroelectric layerHoffmann, Michael, Fengler, Franz P. G., Herzig, Melanie, Mittmann, Terence, Max, Benjamin, Schroeder, Uwe, Negrea, Raluca, Lucian, Pinitilie, Slesazeck, Stefan, Mikolajick, Thomas 17 October 2022 (has links)
The properties of ferroelectric materials, which were discovered almost a century ago¹ , have led to a huge range of applications, such as digital information storage² , pyroelectric energy conversion³ and neuromorphic computing⁴⁻⁵ . Recently, it was shown that ferroelectrics can have negative capacitance⁶⁻¹¹, which could improve the energy efficiency of conventional electronics beyond fundamental limits¹²⁻¹⁴. In Landau–Ginzburg–Devonshire theory¹⁵⁻¹⁷, this negative capacitance is directly related to the doublewell shape of the ferroelectric polarization–energy landscape, which was thought for more than 70 years to be inaccessible to experiments¹⁸. Here we report electrical measurements of the intrinsic double-well energy landscape in a thin layer of ferroelectric Hf₀.₅Zr₀.₅O₂. To achieve this, we integrated the ferroelectric into a heterostructure capacitor with a second dielectric layer to prevent immediate screening of polarization charges during switching. These results show that negative capacitance has its origin in the energy barrier in a double-well landscape. Furthermore, we demonstrate that ferroelectric negative capacitance can be fast and hysteresis-free, which is important for prospective applications¹⁹. In addition, the Hf₀.₅Zr₀.₅O₂ used in this work is currently the most industry-relevant ferroelectric material, because both HfO₂ and ZrO₂ thin films are already used in everyday electronics²⁰. This could lead to fast adoption of negative capacitance effects in future products with markedly improved energy efficiency.
|
3 |
A study of fluxons propagating in annular Josephson junctionsHyland, Luke January 2013 (has links)
In this research we looked at how fluxons propagate in an annular Josephson junction containing a microshort. We studied this from a theoretical stance and looked at how a single fluxon based on the sine-Grodon soliton equation propagates in this type of junction. It has been seen from a variety of studies that fluxons have many applications through the use of Josephson junctions. The aim of this thesis was to see whether a fluxon will show new properties whilst coming into contact with a microshort located in the junction. We also explored the different geometries a Josephson junction can have and whether that would show the fluxon to present new phenomena. We will also examine point particle systems. With this in mind we took a keen interest in how the interaction between two of these particles in a double well potential would present itself and whether a relationship would become apparent. Alongside the point particle system we modelled fluxons in a double well potential and comment on the similarities with the point particle system. With the aid of the computer programmes Mathematica and COMSOL Multiphysics we were able to compute these different theoretical models and present the work in a logical order with a progression from a single point particle in a double well potential to a fluxon in a heart-shaped Josephson junction. We have looked at current theories and ideas present in this area of condensed matter physics and have explained these in the subsequent thesis.
|
4 |
Atom chips for metrology / Atom chips pour la métrologieSzmuk, Ramon 20 January 2015 (has links)
Cette thèse porte sur deux sujets principaux: l'évaluation de la stabilité d'une horloge sur microcircuit utilisant des atomes piégés (Trapped Atom Clock on a Chip - TACC) et l'extension de cette technologie vers la réalisation d'un interféromètre atomique sur la même puce. Cette combinaison constitue la base pour la réalisation de capteurs inertiels intégrés pour la navigation. Des travaux antérieurs ont installé l'horloge et ont découvert, entre autres, des temps de cohérence très longs, qui permettent une interrogation Ramsey jusqu'à 5 s, une condition préalable pour le fonctionnement à grande stabilité. Je présente ici la première évaluation approfondie de la stabilité de l'horloge. Avec mon prédécesseur, nous avons démontré les fluctuations de fréquences relatives de 5.8 10-13 à 1 s intégrant jusqu'à 6 10-15 à 30000 s.La deuxième partie de cette thèse vise à étendre la polyvalence de notre puce atomique pour créer un interféromètre. J'ai étudié divers régimes d'interféromètres en utilisant des potentiels habillés par microondes. Le premier régime consiste à déplacer l'un des états d'horloge verticalement pendant une séquence d'horloge Ramsey. Ceci permet la mesure de gradients de potentiel en exploitant la différence de fréquences entre les deux états. Le second régime utilise des champs microondes pour générer un potentiel de double puits dans l'un des états d'horloge et un seul puits dans l'autre.À partir du seul puits, un pulse-π sur la transition d'horloge constitue la séparatrice de l'interféromètre et conduit une séparation spatiale tout en préservant le même état interne pour les deux bras de l'interféromètre. / This thesis covers two main subjects: the evaluation of the stability of a Trapped Atom Clock on a Chip (TACC) and the expansion of this technology towards creating an atom interferometer on the same chip. The combination of a clock and an interferometer on the same chip constitutes the basis for the realization of atom-based integrated inertial navigation units. Previous work installed the clock operation and discovered, among others, very long coherence times, which allow Ramsey interrogations of up to 5 s, a prerequisite for high stability operation. I present the first thorough evaluation of the clock stability. Together with my predecessor we have demonstrated relative frequency fluctuations of 5.8 10-13 at 1 s integrating down to 6 10-15 at 30,000 s. The second part of this thesis aims to expand the versatility of our atom chip to create an atom interferometer. I have studied various interferometer schemes using microwave dressed potentials and implemented these to the set-up. The first scheme, following work by P. Treutlein et al., involves displacing one of the clock states vertically during a Ramsey clock sequence thereby allowing the measurement of potential gradients by exploiting the differential frequency shift accumulated between the two states. Ramsey fringes where recorded for different durations of the splitting, resulting in a clear signal of the wavepacket separation. The second scheme uses microwave dressing to generate a double well potential in one of the clock states and a single well in the other. Starting in the single well, a π-pulse on the clock transition constitutes the beam splitter and leads to a spatial separation for the same internal state.
|
5 |
Semiklassische Dynamik ultrakalter Bose-Gase / Semiclassical dynamics of ultracold Bose gasesSimon, Lena 04 April 2013 (has links) (PDF)
Die Dynamik anfänglich aus dem Gleichgewicht gebrachter wechselwirkender Quantenvielteilchensysteme wirft aktuell noch spannende Fragen auf. In Bezug auf die Thermalisierung ist z.B. nach wie vor ungeklärt, in welcher Form sie überhaupt stattfindet und in welchen Observablen bzw. auf welcher Zeitskala sie zu beobachten ist. Eine ideale Grundlage zur Erforschung von Relaxationsdynamiken in wechselwirkenden Vielteilchensystemen bieten ultrakalte Quantengase aufgrund ihrer guten Kontrollier- und Variierbarkeit. Ein allgemeiner theoretischer Rahmen, auf dessen Basis solche Prozesse zu untersuchen sind, steht jedoch infolge der großen Anzahl der beteiligten Freiheitsgrade bisher nicht zur Verfügung.
Für ultrakalte bosonische Gase stellt die Gross-Pitaevskii-Gleichung eines der wichtigsten theoretischen Werkzeuge dar, eine klassische Feldgleichung für die Kondensatwellenfunktion in Molekularfeldnäherung. Die ihr zugrunde liegende Näherung erlaubt jedoch keine nicht-trivialen Aussagen über den vollen N-Teilchenzustand, dessen Kenntnis für die Untersuchung einer möglichen Relaxationsdynamik unabdingbar ist.
Um der theoretischen Beschreibung des vollen bosonischen Feldes einen Schritt näher zu kommen, untersucht die vorliegende Arbeit die Anwendung semiklassischer Methoden auf ultrakalte Bosegase. Diese sind in der Regel dann sehr genau, wenn die beteiligten Wirkungen groß gegenüber dem Planckschen Wirkungsquantum sind. Für bosonische Felder wird dieser Grenzfall durch die Bedingung einer großen Teilchenzahl ersetzt. Die immense Anzahl an Teilchen in den hier behandelten Vielteilchensystemen macht die Anwendung semiklassischer Methoden auf diesem Gebiet also vielversprechend.
Als zentrales Modellsystem wird ein anfänglich aus dem Gleichgewicht gebrachtes ultrakaltes bosonisches Doppelmuldensystem betrachtet, das eine hochinteressante Dynamik aufweist, die auf das Wechselspiel der Tunneldynamik einerseits und der Wechselwirkung der Teilchen untereinander andererseits zurückzuführen ist. Als Referenz lassen sich aufgrund der speziellen Fallengeometrie im Rahmen der Zwei-Moden-Näherung die Ergebnisse einer numerisch exakten Untersuchung heranziehen. Durch den Einsatz der namhaften WKB-Quantisierung und des besonders aus der Molekülphysik bekannten Reflexionsprinzips wird hier ein geschlossener analytischer Ausdruck für die sogenannte Populationsdifferenz im Doppelminimum hergeleitet, der ausschließlich von den wenigen relevanten Systemparametern abhängt. Diese mächtige Formel erlaubt es nun zum ersten Mal, in quantitativer Weise die charakteristische Sequenz aus Oszillationen, Kollapsen und Revivals in Abhängigkeit der vorausgesetzten Parameter zu untersuchen.
Nach dieser ersten erfolgreichen Anwendung semiklassischer Methoden im Modellsystem wird über die reduzierte Dynamik der Populationsdifferenz hinausgegangen. Mithilfe des semiklassischen Herman-Kluk-Propagators lässt sich selbst der volle N-Teilchenzustand untersuchen. Da es letztlich um die Beschreibung ultrakalter Bosonen in beliebigen Potentialen gehen soll, wird zunächst der Herman-Kluk-Propagator für eine Feldtheorie vorgestellt. Im Doppelmuldensystem zeigt sich dann in der Anwendung die semiklassische Propagation in der Lage, für alle untersuchten Parameterregime gute Übereinstimmung mit den numerisch exakten Ergebnissen zu liefern.
Zusätzlich findet ein Abgleich der Resultate mit der Truncated Wigner Approximation statt, auf die im Forschungsgebiet ultrakalter Bosonen häufig zurück gegriffen wird. Diese beschreibt die Zeitentwicklung einer Wignerverteilung unter Aussparung der Quanteninterferenzen. In der vorliegenden Arbeit wird gezeigt, dass die Herman-Kluk-Propagation unter Berücksichtigung der Phasen weit über die Truncated Wigner Approximation hinausgeht: Sie gibt alle wichtigen Charakteristika der Dynamik im Doppelmuldensystem wieder.
Um die Semiklassik auf ihre Aussagefähigkeit in Bezug auf eine noch komplexere Dynamik zu untersuchen, wird zum Abschluss das Drei-Topf-System betrachtet, das zusätzlich chaotische Regionen im Phasenraum aufweist. Auch hier zeigt sich, dass die semiklassische Berücksichtigung der Phasen die Truncated Wigner Approximation in den Schatten stellt. Allerdings ergeben sich durch die Instabilität der Trajektorien für stark chaotische Regime numerische Probleme, die es in der Zukunft zu lösen gilt. / The dynamics of initially non equilibrium interacting quantum many body systems is an ongoing and interesting field of research. It is still an open question in which form relaxation occurs in such systems, and in which observables and on which timescales a possible thermalization might appear. A perfect playground for the investigations of relaxation dynamics in interacting many body schemes is provided by ultracold quantum gases, which are easily to be controlled and varied in experiments.
However, a general theoretical framework for the investigation of such processes is still missing, due to the huge amount of involved degrees of freedom. One of the main theoretical tools in the field of ultracold bosonic gases represents the famous Gross-Pitaevskii equation, a field equation for the Bose-Einstein condensate wave function in terms of a mean-field approximation. However, the underlying approximation prevents the possibility to draw non-trivial conclusions about the full N-particle state, the information of which is necessary for the analysis of relaxation processes.
To gain the theoretical description of the full bosonic field, the present thesis deals with the application of semiclassical methods to ultracold boson gases. Those techniques become in general exact, as long as the involved actions are large compared to Planck's constant. For many body systems it turns out that semiclassics are expected to give good results also for the condition of high particle numbers, which is precisely fulfilled in these schemes, making the semiclassical approaches promising. As an essential model system an initially out of equilibrium ultracold bosonic double-well system is investigated. This configuration provides highly interesting dynamics due to the interplay of the tunneling dynamics on the one hand and the interaction amongst the particles on the other. The special trap geometry makes exact numerical calculations in the framework of the two-mode approximation available, which serve in the following as reference data.
By applying the common semiclassical WKB approximation and the reflection principle known from molecule physics, a closed analytical expression for the so-called population imbalance of the bosons in the double-well is derived, depending only on the few relevant system parameters. This mighty formula allows for the first time the quantitative investigation of the characteristic sequence consisting of oscillations, collapse and revivals in dependence on the parameters of the system. Since the semiclassical approaches succeeded for the double-well model so far the so-called Herman-Kluk propagator is adopted, to go beyond the reduced dynamics of the population imbalance.
The propagator provides the possibility to treat the full N-particle state theoretically and is introduced for the most general case of a bosonic quantum field. Its application to the double-well system yields for all investigated parameter regimes very good agreement with the numerical exact results.
Furthermore the outcomes are compared to the Truncated Wigner approximation, which is frequently used in the research field of ultracold bosons. This approach pictures the time evolution of a Wigner distribution, without taking into account the quantum interferences. In the present thesis it is shown that the Herman-Kluk propagation goes clearly beyond the truncated Wigner approach by considering in addition the quantum phases: The propagator is able to reproduce all of the distinctive features of the double-well dynamics.
In order to test the performance of semiclassical methods in matters of even more complex systems, the ultracold bosonic triple-well model is finally considered, which exhibits unlike the double-well scheme chaotic regions in phase space. It turns out that the semiclassical propagation outplays again the truncated Wigner approximation. On the other hand the instability of the highly chaotic trajectories causes numerical problems, which have to be solved in the future.
|
6 |
WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum DotPlatt, Edward January 2008 (has links)
A simplified model of a double quantum dot is presented and analyzed, with applications to spin-qubit quantum computation. The ability to trap single electrons in semiconductor nanostructures has led to the proposal of quantum computers with spin-based qubits coupled by the exchange interaction. Current theory predicts an exchange interaction with a -1 power-law dependence on the detuning ϵ, the energy offset between the two dots. However, experiment has shown a -3/2 power-law dependence on ϵ. Using WKB analysis, this thesis explores one possible source of the modified dependence, namely an ϵ-dependent tunnel coupling between the two wells. WKB quantization is used to find expressions for the tunnel coupling of a one-dimensional double-well, and these results are compared to the exact, numerical solutions, as determined by the finite difference method and the transfer matrix method. Small ϵ-dependent corrections to the tunnel coupling are observed. In typical cases, WKB correctly predicts a constant tunnel coupling at leading-order. WKB also predicts small ϵ-dependent corrections for typical cases and strongly ϵ-dependent tunnel couplings for certain exceptional cases. However, numerical simulations suggest that WKB is not accurate enough to analyze the small corrections, and is not valid in the exceptional cases. Deviations from the conventional form of the low-energy Hamiltonian for a double-well are also observed and discussed.
|
7 |
WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum DotPlatt, Edward January 2008 (has links)
A simplified model of a double quantum dot is presented and analyzed, with applications to spin-qubit quantum computation. The ability to trap single electrons in semiconductor nanostructures has led to the proposal of quantum computers with spin-based qubits coupled by the exchange interaction. Current theory predicts an exchange interaction with a -1 power-law dependence on the detuning ϵ, the energy offset between the two dots. However, experiment has shown a -3/2 power-law dependence on ϵ. Using WKB analysis, this thesis explores one possible source of the modified dependence, namely an ϵ-dependent tunnel coupling between the two wells. WKB quantization is used to find expressions for the tunnel coupling of a one-dimensional double-well, and these results are compared to the exact, numerical solutions, as determined by the finite difference method and the transfer matrix method. Small ϵ-dependent corrections to the tunnel coupling are observed. In typical cases, WKB correctly predicts a constant tunnel coupling at leading-order. WKB also predicts small ϵ-dependent corrections for typical cases and strongly ϵ-dependent tunnel couplings for certain exceptional cases. However, numerical simulations suggest that WKB is not accurate enough to analyze the small corrections, and is not valid in the exceptional cases. Deviations from the conventional form of the low-energy Hamiltonian for a double-well are also observed and discussed.
|
8 |
Semiklassische Dynamik ultrakalter Bose-GaseSimon, Lena 31 January 2013 (has links)
Die Dynamik anfänglich aus dem Gleichgewicht gebrachter wechselwirkender Quantenvielteilchensysteme wirft aktuell noch spannende Fragen auf. In Bezug auf die Thermalisierung ist z.B. nach wie vor ungeklärt, in welcher Form sie überhaupt stattfindet und in welchen Observablen bzw. auf welcher Zeitskala sie zu beobachten ist. Eine ideale Grundlage zur Erforschung von Relaxationsdynamiken in wechselwirkenden Vielteilchensystemen bieten ultrakalte Quantengase aufgrund ihrer guten Kontrollier- und Variierbarkeit. Ein allgemeiner theoretischer Rahmen, auf dessen Basis solche Prozesse zu untersuchen sind, steht jedoch infolge der großen Anzahl der beteiligten Freiheitsgrade bisher nicht zur Verfügung.
Für ultrakalte bosonische Gase stellt die Gross-Pitaevskii-Gleichung eines der wichtigsten theoretischen Werkzeuge dar, eine klassische Feldgleichung für die Kondensatwellenfunktion in Molekularfeldnäherung. Die ihr zugrunde liegende Näherung erlaubt jedoch keine nicht-trivialen Aussagen über den vollen N-Teilchenzustand, dessen Kenntnis für die Untersuchung einer möglichen Relaxationsdynamik unabdingbar ist.
Um der theoretischen Beschreibung des vollen bosonischen Feldes einen Schritt näher zu kommen, untersucht die vorliegende Arbeit die Anwendung semiklassischer Methoden auf ultrakalte Bosegase. Diese sind in der Regel dann sehr genau, wenn die beteiligten Wirkungen groß gegenüber dem Planckschen Wirkungsquantum sind. Für bosonische Felder wird dieser Grenzfall durch die Bedingung einer großen Teilchenzahl ersetzt. Die immense Anzahl an Teilchen in den hier behandelten Vielteilchensystemen macht die Anwendung semiklassischer Methoden auf diesem Gebiet also vielversprechend.
Als zentrales Modellsystem wird ein anfänglich aus dem Gleichgewicht gebrachtes ultrakaltes bosonisches Doppelmuldensystem betrachtet, das eine hochinteressante Dynamik aufweist, die auf das Wechselspiel der Tunneldynamik einerseits und der Wechselwirkung der Teilchen untereinander andererseits zurückzuführen ist. Als Referenz lassen sich aufgrund der speziellen Fallengeometrie im Rahmen der Zwei-Moden-Näherung die Ergebnisse einer numerisch exakten Untersuchung heranziehen. Durch den Einsatz der namhaften WKB-Quantisierung und des besonders aus der Molekülphysik bekannten Reflexionsprinzips wird hier ein geschlossener analytischer Ausdruck für die sogenannte Populationsdifferenz im Doppelminimum hergeleitet, der ausschließlich von den wenigen relevanten Systemparametern abhängt. Diese mächtige Formel erlaubt es nun zum ersten Mal, in quantitativer Weise die charakteristische Sequenz aus Oszillationen, Kollapsen und Revivals in Abhängigkeit der vorausgesetzten Parameter zu untersuchen.
Nach dieser ersten erfolgreichen Anwendung semiklassischer Methoden im Modellsystem wird über die reduzierte Dynamik der Populationsdifferenz hinausgegangen. Mithilfe des semiklassischen Herman-Kluk-Propagators lässt sich selbst der volle N-Teilchenzustand untersuchen. Da es letztlich um die Beschreibung ultrakalter Bosonen in beliebigen Potentialen gehen soll, wird zunächst der Herman-Kluk-Propagator für eine Feldtheorie vorgestellt. Im Doppelmuldensystem zeigt sich dann in der Anwendung die semiklassische Propagation in der Lage, für alle untersuchten Parameterregime gute Übereinstimmung mit den numerisch exakten Ergebnissen zu liefern.
Zusätzlich findet ein Abgleich der Resultate mit der Truncated Wigner Approximation statt, auf die im Forschungsgebiet ultrakalter Bosonen häufig zurück gegriffen wird. Diese beschreibt die Zeitentwicklung einer Wignerverteilung unter Aussparung der Quanteninterferenzen. In der vorliegenden Arbeit wird gezeigt, dass die Herman-Kluk-Propagation unter Berücksichtigung der Phasen weit über die Truncated Wigner Approximation hinausgeht: Sie gibt alle wichtigen Charakteristika der Dynamik im Doppelmuldensystem wieder.
Um die Semiklassik auf ihre Aussagefähigkeit in Bezug auf eine noch komplexere Dynamik zu untersuchen, wird zum Abschluss das Drei-Topf-System betrachtet, das zusätzlich chaotische Regionen im Phasenraum aufweist. Auch hier zeigt sich, dass die semiklassische Berücksichtigung der Phasen die Truncated Wigner Approximation in den Schatten stellt. Allerdings ergeben sich durch die Instabilität der Trajektorien für stark chaotische Regime numerische Probleme, die es in der Zukunft zu lösen gilt. / The dynamics of initially non equilibrium interacting quantum many body systems is an ongoing and interesting field of research. It is still an open question in which form relaxation occurs in such systems, and in which observables and on which timescales a possible thermalization might appear. A perfect playground for the investigations of relaxation dynamics in interacting many body schemes is provided by ultracold quantum gases, which are easily to be controlled and varied in experiments.
However, a general theoretical framework for the investigation of such processes is still missing, due to the huge amount of involved degrees of freedom. One of the main theoretical tools in the field of ultracold bosonic gases represents the famous Gross-Pitaevskii equation, a field equation for the Bose-Einstein condensate wave function in terms of a mean-field approximation. However, the underlying approximation prevents the possibility to draw non-trivial conclusions about the full N-particle state, the information of which is necessary for the analysis of relaxation processes.
To gain the theoretical description of the full bosonic field, the present thesis deals with the application of semiclassical methods to ultracold boson gases. Those techniques become in general exact, as long as the involved actions are large compared to Planck's constant. For many body systems it turns out that semiclassics are expected to give good results also for the condition of high particle numbers, which is precisely fulfilled in these schemes, making the semiclassical approaches promising. As an essential model system an initially out of equilibrium ultracold bosonic double-well system is investigated. This configuration provides highly interesting dynamics due to the interplay of the tunneling dynamics on the one hand and the interaction amongst the particles on the other. The special trap geometry makes exact numerical calculations in the framework of the two-mode approximation available, which serve in the following as reference data.
By applying the common semiclassical WKB approximation and the reflection principle known from molecule physics, a closed analytical expression for the so-called population imbalance of the bosons in the double-well is derived, depending only on the few relevant system parameters. This mighty formula allows for the first time the quantitative investigation of the characteristic sequence consisting of oscillations, collapse and revivals in dependence on the parameters of the system. Since the semiclassical approaches succeeded for the double-well model so far the so-called Herman-Kluk propagator is adopted, to go beyond the reduced dynamics of the population imbalance.
The propagator provides the possibility to treat the full N-particle state theoretically and is introduced for the most general case of a bosonic quantum field. Its application to the double-well system yields for all investigated parameter regimes very good agreement with the numerical exact results.
Furthermore the outcomes are compared to the Truncated Wigner approximation, which is frequently used in the research field of ultracold bosons. This approach pictures the time evolution of a Wigner distribution, without taking into account the quantum interferences. In the present thesis it is shown that the Herman-Kluk propagation goes clearly beyond the truncated Wigner approach by considering in addition the quantum phases: The propagator is able to reproduce all of the distinctive features of the double-well dynamics.
In order to test the performance of semiclassical methods in matters of even more complex systems, the ultracold bosonic triple-well model is finally considered, which exhibits unlike the double-well scheme chaotic regions in phase space. It turns out that the semiclassical propagation outplays again the truncated Wigner approximation. On the other hand the instability of the highly chaotic trajectories causes numerical problems, which have to be solved in the future.
|
9 |
Fermions and Bosons on an Atom ChipExtavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence.
This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate,
and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb
collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF ,
and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create
dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
|
10 |
Fermions and Bosons on an Atom ChipExtavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence.
This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate,
and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb
collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF ,
and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create
dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
|
Page generated in 0.0275 seconds