• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 13
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 64
  • 50
  • 39
  • 28
  • 23
  • 22
  • 21
  • 17
  • 16
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modeling, Advance Control, and Grid Integration of Large-Scale DFIG-Based Wind Turbines during Normal and Fault Ride-Through Conditions

Alsmadi, Yazan M. 14 October 2015 (has links)
No description available.
62

Modelling, Analysis, and Control Aspects of a Rotating Power Electronic Brushless Doubly-Fed Induction Generator

Malik, Naveed ur Rehman January 2015 (has links)
This thesis deals with the modeling, analysis and control of a novel brushlessgenerator for wind power application. The generator is named as rotatingpower electronic brushless doubly-fed induction machine/generator (RPEBDFIM/G). A great advantage of the RPE-BDFIG is that the slip power recoveryis realized in a brushless manner. This is achieved by introducing an additionalmachine termed as exciter together with the rotating power electronicconverters, which are mounted on the shaft of a DFIG. It is shown that theexciter recovers the slip power in a mechanical manner, and delivers it backto the grid. As a result, slip rings and carbon brushes can be eliminated,increasing the robustness of the system, and reducing the maintenance costsand down-time of the turbine. To begin with, the dynamic model of the RPE-BDFIG is developed andanalyzed. Using the dynamic model, the working principle of the generatoris understood and its operation explained. The analysis is carried out atspeeds, ±20% around the synchronous speed of the generator. Moreover, thedynamics of the generator due to external load-torque disturbances are investigated.Additionally, the steady-state model is also derived and analyzed forthe machine, when operating in motor mode. As a next step, the closed-loop control of the generator is considered indetail. The power and speed control of the two machines of the generator andthe dc-link voltage control is designed using internal model control (IMC)principles. It is found that it is possible to maintain the stability of thegenerator against load-torque disturbances from the turbine and the exciter,at the same time maintain a constant dc-link voltage of the rotor converter.The closed-loop control is also implemented and the operation of the generatorwith the control theory is confirmed through experiments.In the third part of the thesis, the impact of grid faults on the behaviourof the generator is investigated. The operation of the generator and its responseis studied during symmetrical and unsymmetrical faults. An approachto successful ride through of the symmetrical faults is presented, using passiveresistive network (PRN). Moreover, in order to limit the electrical and mechanicaloscillations in the generator during unsymmetrical faults, the dualvector control (DVC) is implemented. It is found that DVC to a certain extentcan be used to safeguard the converter against large oscillations in rotorcurrents. Finally, for completeness of the thesis, a preliminary physical design ofthe rotating power electronic converter has been done in a finite elementsoftware called ANSYS. The thermal footprint and the cooling capability,with estimates of the heatsink and fan sizes, are presented. Besides, another variant of a rotating electronic induction machine whichis based on the Lindmark concept and operating in a single-fed mode is also investigated. It’s steady-state model is developed and verified through experiments. / <p>QC 20151006</p>
63

Algorithmes de conception de lois de commande prédictives pour les systèmes de production d’énergie / Control design algorithms for Model-Based Predictive Power Control. Application for Wind Energy

Ngo, Van Quang Binh 22 June 2017 (has links)
Cette thèse vise à élaborer de nouvelles stratégies de commande basées sur la commande prédictive pour le système de génération d’énergie éolienne. La topologie des systèmes de production éolienne basées sur le Générateur Asynchrone à Double Alimentation (GADA) qui convient à des plateformes de génération dans la gamme de puissance de 1.5 à 6 MW est abordée. Du point de vue technologique, le convertisseur à trois niveaux et clampé par le neutre (3L-NPC) est considéré comme une bonne solution pour une puissance élevée en raison de ses avantages: capacité à réduire la distorsion harmonique de la tension de sortie et du courant, et augmentation de la capacité du convertisseur grâce à une tension réduite appliquée à chaque semi-conducteur de puissance. Une description détaillée de la commande prédictive à ensemble de commande fini (FCS-MPC) avec un horizon de prédiction de deux pas est présentée pour deux boucles de régulation: celle liée au convertisseur connecté au réseau et celle du convertisseur connecté au GADA. Le principe de la commande repose sur l’utilisation d’un modèle de prédiction permettant de prédire le comportement du système pour chaque état de commutation du convertisseur. La minimisation d’une fonction de coût appropriée prédéfinie permet d’obtenir la commutation optimale à appliquer au convertisseur. La thèse étudie premièrement les problèmes liées à la compensation du temps de calcul de la commande et au choix et aux pondérations de la fonction de coût. Ensuite, le problème de stabilité de la commande FCS-MPC est abordé en considérant une fonction de Lyapunov dans la minimisation de la fonction de coût. Finalement, une étude sur la compensation des effets des temps morts du convertisseur est présentée. / This thesis aims to elaborate new control strategies based on Model Predictive control for wind energy generation system. We addressed the topology of doubly fed induction generator (DFIG) based wind generation systems which is suitable for generation platform power in the range in 1.5-6 MW. Furthermore, from the technological point of view, the three-level neutral-point clamped (3L-NPC) inverter configuration is considered a good solution for high power due to its advantages: capability to reduce the harmonic distortion of the output voltage and current, and increase the capacity of the converter thanks to a decreased voltage applied to each power semiconductor.In this thesis, we presented a detailed description of finite control set model predictive control (FCS-MPC) with two step horizon for two control schemes: grid and DFIG connected 3L-NPC inverter. The principle of the proposed control scheme is to use system model to predict the behaviour of the system for every switching states of the inverter. Then, the optimal switching state that minimizes an appropriate predefined cost function is selected and applied directly to the inverter.The study of issues such as delay compensation, computational burden and selection of weighting factor are also addressed in this thesis. In addition, the stability problem of FCS-MPC is solved by considering the control Lyapunov function in the design procedure. The latter study is focused on the compensation of dead-time effect of power converter.
64

Analysis and Control Aspects of Brushless Induction Machines with Rotating Power Electronic Converters

Malik, Naveed ur Rehman January 2012 (has links)
This thesis deals with the steady-state, dynamic and control aspects of new type of brushless configuration of a doubly-fed induction machine in which the slip rings and carbon brushes are replaced by rotating power electronics and a rotating exciter. The aim is to study the stability of this novel configuration of the generator under mechanical and grid disturbances for wind power applications. The derivation, development and analysis of the steady-state model of the brushless doubly-fed induction machine with a rotating excitor and the power electronic converters mounted on the shaft and rotating with it, is studied. The study is performed at rated power of the generator between ±20% slip range. Moreover unity power factor operation between ±20% speed range is also discussed. Furthermore dynamic modeling and control aspects of the generator are also analyzed. The controllers were designed using Internal Model Control principles and vector control methods were used in order to control the generator in a closed-loop system. It is shown that through the use of proper feedback control, the generator behaves in a stable state both at super-synchronous and sub-synchronous speeds. Moreover Low Voltage Ride Through of the generator during symmetrical and unsymmetrical voltage dips is also investigated. Passive Resistive Network strategy is employed for Low Voltage Ride Through of the generator during symmetrical voltage dips. On the other hand, Extended Vector Control is used in order to control the negative sequence currents during unsymmetrical voltage dips. Suppression of negative sequence currents is important as they cause extra heating in the windings and affects the lifetime of the mechanical and electrical components of the generator and system due to oscillations in power and torque. In addition to the above studies a steady-state model of a single-fed induction machine is also developed and investigated where the rotating exciter is removed and the rotor windings are short-circuited through the two rotating power electronic converters. In this way the slip power circulates in the rotor and with the help of the two rotating electronic converters, rotor current is used to magnetize the induction machine thereby improving the power factor. The steady state model is verified through experimental results. / <p>20120914</p> / Brushless Wind Generator with Rotating Power Electronic Converters

Page generated in 0.1891 seconds