• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studie av termiskt klimat : I ett kontorslandskap med stora fönster / Study of thermal climate : In an office landscape with large windows

Ståhlman, Isak January 2017 (has links)
I genomsnitt tillbringar människan större delen av sitt liv inomhus och därför är det viktigt med ett bra inomhusklimat. I Swecos kontor i Uppsala finns det ett missnöje med det termiska klimatet vilket är en del av inomhusklimatet. Kontoret är utformat som ett kontorslandskap med stora fönster. Syftet med detta arbete är att få mer kunskap om termiskt klimat vid stora fönster och glasfasader. Målet är att identifiera orsakerna till missnöjet med det termiska klimatet och att ge kunskapsåterkoppling till kommande projekteringar. I arbetet görs en litteraturstudie för att skapa en teoretisk referensram. Efter det så görs en förstudie för att förstå nuläget och få en bild av missnöjet. Beräkningar, simuleringar och mätningar görs för att utesluta och identifiera orsaker till missnöjet. I arbetet gjordes effektberäkningar på värmebalans vilket visade att effektbehovet var tillgodosett i de två zonerna som studerats. Klimatsimuleringar i de två zonerna utfördes i simuleringsprogrammet IDA Klimat och Energi, där resultaten från simuleringarna höll sig inom kravgränser. Något som däremot inte kan simuleras är lufthastigheter. Mätningar på lufttemperatur och yttemperatur utfördes i de två zonerna. I den ena zonen stämde inte mätvärden överens med börvärdet från rumsenheten. I den andra zonen uppskattades fönsterglasets värmegenomgångskoefficient till 1,3 W/(m2K) vilket kan jämföras med den projekterade värmegenomgångskoefficienten för hela fönstret som är 0,8 W/(m2K). Vid beräkning av lufthastighet från kallras i vistelsezonen användes formler från en studie gjord av Heiselberg. Vid en dimensionerande vinterutetemperatur på -19 °C, en innetemperatur på 22 °C och en fönsterhöjd på 2,4 meter låg lufthastigheten på kravgränsen 0,15 m/s med en värmegenomgångskoefficient på 0,8 W/(m2K) och över kravgränsen med en värmegenomgångskoefficient på 1,3 W/(m2K). Slutligen visade resultaten från arbetet att i den första zonen identifierades orsaken till missnöjet med att styrningen av de klimatstyrande installationerna inte fungerade som tänkt. I den andra zonen identifierades orsaken till missnöjet med att ingen värmekälla användes under fönster för att motverka kallras. Värmekälla under fönster skulle behövas enligt beräkningar från arbetet och enligt litteraturstudien som gjordes i arbetet. Med material från arbetet skapas ett dokument om kallras som kunskapsåterföring till Sweco. Nyckelord: Termiskt klimat, Klimatsimulering, Värmebalans, Kallras, Stora fönster / On average, humans spend most of their life indoors and that is why it is so important to have a good indoor climate. At Sweco ́s office in Uppsala there is a dissatisfaction with the thermal climate, which is a part of the indoor climate. The office is designed with an office landscapes and large windows. The purpose with this project is to get more knowledge about thermal climate within large windows and glass facades. The goal with this project is to identify the reasons for the dissatisfaction with thermal climate and to provide knowledge feedback to the company’s future projects. In the project, a literature study is being conducted to create a theoretical framework. After that, a preliminary study is made to understand the current situation and to get a picture of the dissatisfaction. Calculations, simulations and measurements are made to exclude and identify reasons for the dissatisfaction. In the project calculations on heat balances were made and the calculations showed the power requirement was met in the two zones studied. Climatic simulations in the two zones were conducted in the simulation software IDA Indoor Climate and Energy, where the results from the simulations were within limits. However, something that cannot be simulated is air velocities. Measurements of air temperature and surface temperature were performed in the two zones. In one zone, the measured values did not match the set point from the room unit. In the other, the window glass heat transfer coefficient was estimated to be 1,3 W/(m^2)K, which is comparable to the projected heat transfer value for the entire window, which is 0,8 W/(m^2)K. When calculating air velocity from cold downdraught in the residential zone, Heiselberg formulas were used. At an outdoor design temperature for winter of -19 degrees Celsius, an indoor temperature of 22 degrees Celsius and a window height of 2,4 meters, the air velocity result at the 0,15 m/s limit when the heat transfer value was 0,8 W/(m^2)K and resulting in a value above the limit when the heat transfer value was 1,3 W/(m^2)K. Finally, the results showed that in the first zone, the reason for the dissatisfaction was identified with the fact that the control of the climate control installations did not work as intended. In the second zone, the reason for the dissatisfaction was identified that no heat source was used under windows to prevent cold downdraught. Heat source under windows would be needed according to calculations from work and according to the literature study that was done in this work. With material from the work, a document is created about cold downdraught as knowledge feedback to Sweco. Keywords: Thermal climate, Climate simulation, Heat balance, Cold downdraught, Cold downdraft, Large windows
12

Assessment of Pollution Levels Resulting from Biomass Gasification

Menya, Emmanuel January 2012 (has links)
Today the large scale introduction of biomass gasification is hampered by health, safety and environmental issues which present a major barrier in the deployment of this technology. The condensate in particular resulting from producer gas cooling before use in gas engines is highly toxic and carcinogenic which, if not adequately controlled, can lead to detrimental impacts on human health and the environment. The study was therefore aimed at assessment of pollution levels resulting from biomass gasification organic condensates. The study involved assessing the concentration of polycyclic aromatic hydrocarbons (PAHs) and BTEX (i.e. benzene, toluene, ethylbenzene and xylene) in the condensate deemed toxic and carcinogenic, mention their impact on human health and the environment as well as recommend measures aimed at minimizing pollution levels resulting from biomass gasification.   The gasifier installation at Makerere University was run in downdraft mode using maize cobs as biomass fuel. The producer gas was cooled using a water cooled condenser connected to the exhaust pipe of the gasifier. The condensate was then transferred into sampling bottles made of opaque glass to minimize photochemical reactions in water samples and preserved in a cooler at 2oC to 6oC until the time for analysis to minimize volatilization and bacterial degradation of the hydrocarbons. The capillary gas chromatography with mass spectrometric detector (CGCMSD) was used to analyze the condensate for the selected hydrocarbons. The procedures involved preparation of PAHs and BTEX standard solutions using standard mixtures and internal standards, calibration of the CGCMSD, extraction of the aromatic hydrocarbons using hexane, performing a surrogate analysis to assess percent recoveries and injecting a 2 µl aliquot of the final solution of each test sample in a CGCMSD for analysis. Identification of targeted hydrocarbons was based on the retention time match and mass spectra match against the calibration standards while quantitation was done by use of internal standards.   The average concentration of naphthalene was 204.3 mg/m3, benzene-16.8 mg/m3,toluene-105.5 mg/m3, ethylbenzene-200.9 mg/m3, 1,2-dimethyl benzene-209.5 mg/m3 and 1,3+1,4-dimethyl benzene-790.4 mg/m3. Acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene were not detected in the condensate by the CGCMSD due to their concentration levels being below the detection limit of the CGCMSD. The concentrations of naphthalene and xylene were considerably high compared to the recommended permissible exposure limits thus posing risks on both human health and the environment. It is therefore important to treat the condensate before disposal to the environment. On the other hand, the concentrations of benzene, toluene and ethylbenzene were below the permissible exposure limit and therefore for this study, the liquid effluent was considered to meet the regulatory standards. The recommendations aimed at minimizing pollution levels during biomass gasification were also discussed.
13

Experiments And Analysis on Wood Gasification in an Open Top Downdraft Gasifier

Mahapatra, Sadhan January 2016 (has links) (PDF)
The thesis, through experimental and numerical investigations reports on the work related to packed bed reactors in co-current configuration for biomass gasification. This study has extensively focused on the gasification operating regimes and addressing the issues of presence of tar, an undesirable component for engine application. Systematically, the influence of fuel properties on the gasification process has been studied using single particle analysis and also in packed bed reactors. Studies related to the effect of fuel properties - size, surface area volume ratio and density on the reactor performance are addressed. The influence of these parameters on the propagation rate which indirectly influences the residence time, tar generation, gas compositions is explicitly elucidated. Most of the reported work in literature primarily focuses on counter-current configurations and analysis on propagation flame front/ignition mass flux and temperature profiles mostly under the combustion regime. In this work, flame propagation front movement, bed movement and effective movement for a co-current packed bed reactor of different reactor capacities and a generalized approach towards establishing ‘effective propagation rate’ has been proposed. The work also reports on the importance of particle size and sharing of air from the top and through nozzles on tar generation in the open top down draft reactor configuration. Firstly, pyrolysis, an important component of the thermochemical conversion process has been studied using the flaming time for different biomass samples having varying size, shape and density. The elaborate experiments on the single particle study provides an insight into the reasons for high tar generation for wood flakes/coconut shells and also identifies the importance of the fuel particle geometry related to surface area and volume ratio. Effect of density by comparing the flaming rate of wood flakes and coconut shells with the wood sphere for an equivalent diameter is highlighted. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes and similar values for coconut shells compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to nearly fast pyrolysis process resulting in higher tar fraction with low char yield. Similarly, time for pyrolysis increases with density as observed from the experimental measurements by using coconut shells and wood flakes and concludes the influence on the performance of packed bed reactors. Studies on co-current reactor under various operating conditions from closed top reactor to open top reburn configuration suggests improved residence time reduces tar generation. This study establishes, increased residence time with staged air flow has a better control on residence time and yields lower tar in the raw gas. Studies on the influence of air mass flux on the propagation rate, peak temperature, and gas quality, establishes the need to consider bed movement in the case of co-current packed bed reactor. It is also observed that flame front propagation rate initially increases as the air mass flux is increased, reaches a peak and subsequently decreases. With increase in air mass flux, fuel consumption increases and thereby the bed movement. The importance of bed movement and its effect on the propagation front movement has been established. To account for variation in the fuel density, normalized propagation rate or the ignition mass flux is a better way to present the result. The peak flame front propagation rates are 0.089 mm/s for 10 % moist wood at an air mas flux of 0.130 kg/m2-s and while 0.095 mm/s for bone-dry wood at an air mass flux of 0.134 kg/m2-s. These peak propagation rates occur with the air mass flux in the range of 0.130 to 0.134 kg/m2-s. The present results compare well with those available in the literature on the effective propagation rate with the variation of air mass flux, and deviations are linked to fuel properties. The propagation rate correlates with mass flux as ̇ . during the increasing regime of the front movement. The extinction of flame propagation or the front receding has been established both experimentally supported from the model analysis and is found to be at an air mass flux of 0.235 kg/m2-s. The volume fraction of various gaseous species at the reactor exits obtained from the experiment is 14.89±0.28 % CO2, 15.75±0.43 % CO and 11.09±1.99 % H2 respectively with the balance being CH4 and N2. The model analysis using an in-house program developed for packed bed reactor provide a comprehensive understanding with respect to the performance of packed bed reactor under gasification conditions. The model addresses the dependence on air mass flux on gas composition and propagation rate and is used to validate the experimental results. Based on the energy balance in the reaction front, the analysis clearly identifies the reasons for stable propagation front and receding front in a co-current reactor. From the experiments and modelling studies, it is evident that turn-down ratio of a downdraft gasification system is scientifically established. Both the experimental and the numerical studies presented in the current work establishes that the physical properties of the fuel have an impact on the performance of the co-current reactor and for the first time, the importance of bed movement on the propagation rate is identified.

Page generated in 0.0491 seconds