• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a concept for Over The Air Programming of Sensor Nodes

Jayaram, Anantha Ramakrishna 04 February 2016 (has links) (PDF)
Nowadays, wireless sensor networks can be found in many new application areas. In these sensor networks there may exit a part of the network which are difficult to access or lie in a wide area, far apart. A change in the software (e.g., function update or bug fix) can entail reprogramming of all sensor nodes. This is very time consuming and labour intensive, if the patching has to be done manually for each individual sensor nodes. In the area of mobile phones, the over the air (OTA) update function has been established very well with good reliability. In embedded systems such as sensor nodes, where resources are severely restricted, an update cannot be stored but must be programmed directly with the transfer. For this to be possible, a lot of basic functionality is needed to be established to correct errors or to be able to resume a failed programming. Within the framework of this thesis a concept for the transmission and distribution of the firmware and programming the sensor node is established. Focus here is to optimize the use of resources and to provide basic functionality within the programming mode.
2

Proposal of a Hybrid Algorithm for Burst Transmission in Wireless Sensor Networks

Ansar, Zeeshan 17 September 2018 (has links)
The remarkable growth in the applications of low power wireless networks (LPWNs) in various disciplines such as health-care, wildlife monitoring, unmanned vehicles and the emerging Internet of Things (IoT) brings along various challenges. Such applications demand the transfer of large amounts of data in short durations. Unlike conventional medium access control protocols, which force each competing node to contend for each packet it transmits, bulk data transmission enables a node to exclusively use a channel for transferring a large amount of data in succession. Bulk data transmission is a technique in which a sender node is granted exclusive access of the channel in order to transmit all the packets accumulated in its buffer. However, there are two problems with this strategy: (1) For how long should bulk data transfer last if there are multiple contending nodes? (2) How should this strategy deal with the significant fluctuation in the quality of a low-power wireless link? Understanding link quality fluctuations in a wireless sensor network is useful for various reasons. For example, nodes can determine when and for how long they should transmit packets, so that they can reduce the packet loss rate and the cost of retransmission (delay as well as power consumption). However, the quality of a link depends on many factors, which cannot be known except in a probabilistic sense. In this dissertation, I propose an efficient burst transmission scheme that measures and models the dynamic link quality fluctuations. Introducing a large empirical study at the beginning of this dissertation leads to a good understanding of the effect of external factors such as the environment (indoor,outdoor), Cross Technology Interference (CTI) and mobility of a sender node causing link quality to fluctuate. The analysis and observations of the empirical study establishes the basis on which the model for link quality estimation is built and designed. Here I propose three approaches to deal with different aspects of link quality fluctuation. (i) Offline approach- long-term characteristics: The offline approach models the link quality fluctuations by taking into account a large set of data. To obtain such a data set, experiments were performed on the site under study for several weeks. It was observed that the link quality fluctuates considerably even in static deployment. Understanding the stable durations, good and bad alike contribute to the efficient transmission of packets. I propose two offline approaches: (i) The first uses the conditional probability distribution function of signal-to-noise (SNR) fluctuation to estimate the expected reliable and unreliable period. (ii) The second uses k-mean clustering to characterise the link quality fluctuations into different states where the relationship between the states is defined by transitional probabilities. The advantages of employing an offline approach is (i) availability of sufficient memory, (ii) low computational cost, and (iii) possible use of a complex algorithm. However, these approaches can not deal with short-term link quality fluctuation. (ii) Online approach- short-term characteristics: Unlike the offline approaches, an online approach models the link quality in real time and deals with short-term link quality fluctuation. However, this approach has some limitations, such as (i) limited memory space to store data, (ii) high computational cost, (iii) and employment of a simple algorithm to estimate the burst size. My proposed online approach uses adaptive history array to estimate the duration of good and bad states from the statistics of incoming acknowledgement packets. (iii) Hybrid approach- long-to-short-term characteristics: A hybrid approach combines both offline and online methods. I also take advantage of both offline and online models in my proposed hybrid approach. My aim is to characterise the long-term link quality fluctuation with statistics that are obtained offline and to employ the statistics of received acknowledgement packets in real-time to deal with short-term link quality fluctuations. The online statistics are used to fine-tune and calibrate the offline model. To evaluate the performance of my proposed approaches, I implement them in TinyOS and deploy them on TelosB sensor nodes. Furthermore, the proposed approaches in this thesis are compared with the state-of-the-art approaches. The thesis concludes by showing that my approaches efficiently model the link quality fluctuation and propose correct burst size to achieve high throughput, reduce transmission delay, and power consumption under different channel conditions.
3

Balancing of Network Energy using Observer Approach

Patharlapati, Sai Ram Charan 02 December 2016 (has links) (PDF)
Efficient energy use is primarily for any sensor networks to function for a longer time period. There have been many efficient schemes with various progress levels proposed by many researchers. Yet, there still more improvements are needed. This thesis is an attempt to make wireless sensor networks with further efficient on energy usage in the network with respect to rate of delivery of the messages. In sensor network architecture radio, sensing and actuators have influence over the power consumption in the entire network. While listening as well as transmitting, energy is consumed by the radio. However, if by reducing listening times or by reducing the number of messages transmitting would reduce the energy consumption. But, in real time scenario with critical information sensing network leads to information loss. To overcome this an adaptive routing technique should be considered. So, that it focuses on saving energy in a much more sophisticated way without reducing the performance of the sensing network transmitting and receiving functionalities. This thesis tackles on parts of the energy efficiency problem in a wireless sensor network and improving delivery rate of messages. To achieve this a routing technique is proposed. In this method, switching between two routing paths are considered and the switching decision taken by the server based on messages delivered comparative previous time intervals. The goal is to get maximum network life time without degrading the number of messages at the server. In this work some conventional routing methods are considered for implementing an approach. This approach is by implementing a shortest path, Gradient based energy routing algorithm and an observer component to control switching between paths. Further, controlled switching done by observer compared to normal initial switch rule. Evaluations are done in a simulation environment and results show improvement in network lifetime in a much more balanced way.
4

A Multi-objective Ant Colony Optimisation-based Routing Approach for Wireless Sensor Networks Incorporating Trust / Ein Mehr-Zielvorgaben Ameisenkolonie-optimierungsbasierter Routing-Ansatz für drahtlose Sensornetzwerke unter Berücksichtigung von Vertrauen

Kellner, Ansgar 21 June 2012 (has links)
No description available.
5

Enhancing Mobility in Low Power Wireless Sensor Networks

Wen, Jianjun 29 October 2018 (has links)
In the early stages of wireless sensor networks (WSNs), low data rate traffic patterns are assumed as applications have a single purpose with simple sensing task and data packets are generated at a rate of minutes or hours. As such, most of the proposed communication protocols focus on energy efficiency rather than high throughput. Emerging high data rate applications motivate bulk data transfer protocols to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. However, due to the low-power, low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. Especially when the transmitters are mobile, packet loss becomes worse. To reduce the energy expenditure caused by packet loss and retransmission, a burst transmission scheme is required that can adapt to the link dynamics and estimate the number of packets to transmit in burst. As the mobile node is moving within the network, it cannot always maintain a stable link with one specific stationary node. When link deterioration is constantly detected, the mobile node has to initiate a handover process to seamlessly transfer the communication to a new relay node before the current link breaks. For this reason, it is vital for a mobile node to (1) determine whether a fluctuation in link quality eventually results in a disconnection, (2) foresee potential disconnection well ahead of time and establish an alternative link before the disconnection occurs, and (3) seamlessly transfer communication to the new link. In this dissertation, we focus on dealing with burst transmission and handover issues in low power mobile wireless sensor networks. To this end, we begin with designing a novel mobility enabled testing framework as the evaluation testbed for all our remaining studies. We then perform an empirical study to investigate the link characteristics in mobile environments. Using these observations as guidelines, we propose three algorithms related to mobility that will improve network performance in terms of latency and throughput: i) Mobility Enabled Testing Framework (MobiLab). Considering the high fluctuation of link quality during mobility, protocols supporting mobile wireless sensor nodes should be rigorously tested to ensure that they produce predictable outcomes before actual deployment. Furthermore, considering the typical size of wireless sensor networks and the number of parameters that can be configured or tuned, conducting repeated and reproducible experiments can be both time consuming and costly. The conventional method for evaluating the performance of different protocols and algorithms under different network configurations is to change the source code and reprogram the testbed, which requires considerable effort. To this end, we present a mobility enabled testbed for carrying out repeated and reproducible experiments, independent of the application or protocol types which should be tested. The testbed consists of, among others, a server side control station and a client side traffic ow controller which coordinates inter- and intra-experiment activities. ii) Adaptive Burst Transmission Scheme for Dynamic Environment. Emerging high data rate applications motivate bulk data transfer protocol to achieve high throughput. The basic idea is to enable nodes to transmit a sequence of packets in burst once they obtain a medium. Due to the low-power and low-cost nature, the transceiver used in wireless sensor networks is prone to packet loss. When the transmitter is mobile, packet loss becomes even worse. The existing bulk data transfer protocols are not energy efficient since they keep their radios on even while a large number of consecutive packet losses occur. To address this challenge, we propose an adaptive burst transmission scheme (ABTS). In the design of the ABTS, we estimate the expected duration in which the quality of a specific link remains stable using the conditional distribution function of the signal-to-noise ratio (SNR) of received acknowledgment packets. We exploit the expected duration to determine the number of packets to transmit in burst and the duration of the sleeping period. iii) Kalman Filter Based Handover Triggering Algorithm (KMF). Maintaining a stable link in mobile wireless sensor network is challenging. In the design of the KMF, we utilized combined link quality metrics in physical and link layers, such as Received Signal Strength Indicator (RSSI) and packet success rate (PSR), to estimate link quality fluctuation online. Then Kalman filter is adopted to predict link dynamics ahead of time. If a predicted link quality fulfills handover trigger criterion, a handover process will be initiated to discover alternative relay nodes and establish a new link before the disconnection occurs. iv) Mobile Sender Initiated MAC Protocol (MSI-MAC). In cellular networks, mobile stations are always associated with the nearest base station through intra- and inter-cellular handover. The underlying process is that the quality of an established link is continually evaluated and handover decisions are made by resource rich base stations. In wireless sensor networks, should a seamless handover be carried out, the task has to be accomplished by energy-constraint, resource-limited, and low-power wireless sensor nodes in a distributed manner. To this end, we present MSI-MAC, a mobile sender initiated MAC protocol to enable seamless handover.
6

Development of a concept for Over The Air Programming of Sensor Nodes

Jayaram, Anantha Ramakrishna 13 January 2016 (has links)
Nowadays, wireless sensor networks can be found in many new application areas. In these sensor networks there may exit a part of the network which are difficult to access or lie in a wide area, far apart. A change in the software (e.g., function update or bug fix) can entail reprogramming of all sensor nodes. This is very time consuming and labour intensive, if the patching has to be done manually for each individual sensor nodes. In the area of mobile phones, the over the air (OTA) update function has been established very well with good reliability. In embedded systems such as sensor nodes, where resources are severely restricted, an update cannot be stored but must be programmed directly with the transfer. For this to be possible, a lot of basic functionality is needed to be established to correct errors or to be able to resume a failed programming. Within the framework of this thesis a concept for the transmission and distribution of the firmware and programming the sensor node is established. Focus here is to optimize the use of resources and to provide basic functionality within the programming mode.
7

Balancing of Network Energy using Observer Approach

Patharlapati, Sai Ram Charan 01 September 2016 (has links)
Efficient energy use is primarily for any sensor networks to function for a longer time period. There have been many efficient schemes with various progress levels proposed by many researchers. Yet, there still more improvements are needed. This thesis is an attempt to make wireless sensor networks with further efficient on energy usage in the network with respect to rate of delivery of the messages. In sensor network architecture radio, sensing and actuators have influence over the power consumption in the entire network. While listening as well as transmitting, energy is consumed by the radio. However, if by reducing listening times or by reducing the number of messages transmitting would reduce the energy consumption. But, in real time scenario with critical information sensing network leads to information loss. To overcome this an adaptive routing technique should be considered. So, that it focuses on saving energy in a much more sophisticated way without reducing the performance of the sensing network transmitting and receiving functionalities. This thesis tackles on parts of the energy efficiency problem in a wireless sensor network and improving delivery rate of messages. To achieve this a routing technique is proposed. In this method, switching between two routing paths are considered and the switching decision taken by the server based on messages delivered comparative previous time intervals. The goal is to get maximum network life time without degrading the number of messages at the server. In this work some conventional routing methods are considered for implementing an approach. This approach is by implementing a shortest path, Gradient based energy routing algorithm and an observer component to control switching between paths. Further, controlled switching done by observer compared to normal initial switch rule. Evaluations are done in a simulation environment and results show improvement in network lifetime in a much more balanced way.
8

Design of an Energy-Aware Unequal Clustering Protocol based on Fuzzy Logic for Wireless Sensor Networks

Kheriji, Sabrine 25 February 2021 (has links)
Energy consumption is a major concern in Wireless Sensor Networks (WSNs) resulting in a strong demand for energy-aware communication technologies. In this context, several unequal cluster-based routing protocols have been proposed. However, few of them adopt energetic analysis models for the calculation of the optimal cluster radius and several protocols can not realize an optimal workload balance between sensor nodes. In this scope, the aim of the dissertation is to develop a cluster-based routing protocol for improving energy efficiency in WSN. We propose a Fuzzy-based Energy-Aware Unequal Clustering algorithm (FEAUC) with circular partitioning to balance the energy consumption between sensor nodes and solve the hotspot problem created by a multi-hop communication. The developed FEAUC involves mainly four phases: An off-line phase, a cluster formation phase, a cooperation phase and data collection phase. During the off-line phase, an energy analysis is performed to calculate the radius of each ring and the optimal cluster radius per ring. The cluster formation phase is based on a fuzzy logic approach for the cluster head (CH) selection. The cooperation phase aims to define an intermediate node as a router between different CHs. While, in the data collection phase, transmitting data packet from sensor nodes to their appropriate CHs is defined as an intra-cluster communication, and transmitting data from one CH to another until reaching the base station, is defined as an inter-cluster communication. The feasibility of the developed FEAUC is demonstrated by elaborating comparison with selected referred unequal clustering algorithms considering different parameters, mainly, the energy consumption, battery lifetime, time to first node shuts down (FND), time of half of nodes off-line (HND) and time to last node dies (LND). Although, the developed FEAUC is intended to enhance the network lifetime by distributing the large load of CH tasks equally among the normal nodes, running the clustering process in each round is an additional burden, which can significantly drain the remaining energy. For this reason, the FEAUC based protocol has been further developed to become a fault tolerant algorithm (FEAUC-FT). It supports the fault tolerance by using backup CHs to avoid the re-clustering process in certain rounds or by building further routing paths in case of a link failure between different CHs. The validation of the developed FEAUC in real scenarios has been performed. Some sensor nodes, powered with batteries, are deployed in a circular area forming clusters. Performance evaluations are carried out by realistic scenarios and tested for a real deployment using the low-power wireless sensor node panStamp. To complete previous works, as a step of proof of concept, a smart irrigation system is designed, called Air-IoT. Furthermore, a real-time IoT-based sensor node architecture to control the quantity of water in some deployed nodes is introduced. To this end, a cloud-connected wireless network to monitor the soil moisture and temperature is well-designed. Generally, this step is essential to validate and evaluate the proposed unequal cluster-based routing algorithm in a real demonstrator. The proposed prototype guarantees both real-time monitoring and reliable and cost-effective transmission between each node and the base station.:1 Introduction 2 Theoretical background 3 State of the art of unequal cluster-based routing protocols 4 FEAUC: Fuzzy-based Energy-Aware Unequal Clustering 5 Experimental validation of the developed unequal clustering protocol 6 Real application to specific uses cases 7 Conclusions and future research directions / Der Energieverbrauch ist ein Hauptanliegen in drahtlosen Sensornetzwerken (WSNs), was zu einer starken Nachfrage nach energiebewussten Kommunikationstechnologien führt. In diesem Zusammenhang wurden mehrere ungleiche clusterbasierte Routing-Protokolle vorgeschlagen. Allerdings verwenden nur die wenigsten energetische Analysemodelle für die Berechnung des optimalen Cluster-Radius, und mehrere Protokolle können keine optimale Auslastungsbalance zwischen Sensorknoten realisieren. In diesem Zusammenhang ist es das Ziel der Dissertation, ein clusterbasiertes Routing-Protokoll zur Verbesserung der Energieeffizienz im WSN zu entwickeln. Wir schlagen einen Fuzzy-basierten Energy-Aware Unequal Clustering-Algorithmus (FEAUC) mit zirkulärer Partitionierung vor, um den Energieverbrauch zwischen Sensorknoten auszugleichen und das durch eine Multi-Hop-Kommunikation entstehende Hotspot-Problem zu lösen. Der entwickelte FEAUC umfasst hauptsächlich vier Phasen: Eine Offline-Phase, eine Clusterbildungsphase, eine Kooperationsphase und eine Phase der Datensammlung. Während der Offline-Phase wird eine Energieanalyse durchgeführt, um den Radius jedes Ringes und den optimalen Cluster- Radius pro Ring zu berechnen. Die Clusterbildungsphase basiert auf einem Fuzzy-Logik-Ansatz für die Clusterkopf (CH)-Auswahl. Die Kooperationsphase zielt darauf ab, einen Zwischenknoten als einen Router zwischen verschiedenen CHs zu definieren. In der Datensammelphase wird die Übertragung von Datenpaketen von Sensorknoten zu ihren entsprechenden CHs als eine Intra-Cluster-Kommunikation definiert, während die Übertragung von Daten von einem CH zu einem anderen CH bis zum Erreichen der Basisstation als eine Inter-Cluster-Kommunikation definiert wird. Die Machbarkeit des entwickelten FEAUC wird durch die Ausarbeitung eines Vergleichs mit ausgewählten referenzierten ungleichen Clustering-Algorithmen unter Berücksichtigung verschiedener Parameter demonstriert, hauptsächlich des Energieverbrauchs, der Batterielebensdauer, der Zeit bis zum Abschalten des ersten Knotens (FND), der Zeit, in der die Hälfte der Knoten offline ist (HND) und der Zeit bis zum letzten Knoten stirbt (LND). Obwohl mit dem entwickelten FEAUC die Lebensdauer des Netzwerks erhöht warden soll, indem die große Last der CH-Aufgaben gleichmäßig auf die übrigen Knoten verteilt wird, stellt die Durchführung des Clustering-Prozesses in jeder Runde eine zusätzliche Belastung dar, die die verbleibende Energie erheblich entziehen kann. Aus diesem Grund wurde das auf FEAUC basierende Protokoll zu einem fehlerto-leranten Algorithmus (FEAUC-FT) weiterentwickelt. Er unterstützt die Fehlerto-leranz durch die Verwendung von Backup-CHs zur Vermeidung des Re-Clustering-Prozesses in bestimmten Runden oder durch den Aufbau weiterer Routing-Pfade im Falle eines Verbindungsausfalls zwischen verschiedenen CHs. Die Validierung des entwickelten FEAUC in realen Szenarien ist durchgeführt worden. Einige Sensorknoten, die mit Batterien betrieben werden, sind in einem kreisförmigen Bereich angeordnet und bilden Cluster. Leistungsbewertungen warden anhand realistischer Szenarien durchgeführt und für einen realen Einsatz unter Verwendung des drahtlosen Low-Power-Sensorknoten panStamp getestet. Zur Vervollständigung früherer Arbeiten wird als Schritt des Proof-of-Concept ein intelligentes Bewässerungssystem mit der Bezeichnung Air-IoT entworfen. Darüber hinaus wird eine IoT-basierte Echtzeit-Sensorknotenarchitektur zur Kontrolle derWassermenge in einigen eingesetzten Knoten eingeführt. Zu diesem Zweck wird ein mit der Cloud verbundenes drahtloses Netzwerk zur Überwachung der Bodenfeuchtigkeit und -temperatur gut konzipiert. Im Allgemeinen ist dieser Schritt unerlässlich, um den vorgeschlagenen ungleichen clusterbasierten Routing-Algorithmus in einem realen Demonstrator zu validieren und zu bewerten.Der vorgeschlagene Prototyp garantiert sowohl Echtzeit-Überwachung als auch zuverlässige und kostengünstige Übertragung zwischen jedem Knoten und der Basisstation.:1 Introduction 2 Theoretical background 3 State of the art of unequal cluster-based routing protocols 4 FEAUC: Fuzzy-based Energy-Aware Unequal Clustering 5 Experimental validation of the developed unequal clustering protocol 6 Real application to specific uses cases 7 Conclusions and future research directions
9

Accuracy Improvement of Predictive Neural Networks for Managing Energy in Solar Powered Wireless Sensor Nodes

Al_Omary, Murad 20 December 2019 (has links)
Das drahtlose Sensornetzwerk (WSN) ist eine Technologie, die Umgebungsbedingungen oder physikalische Parameter misst, weiterleitet und per Fernüberwachung zur Verfügung stellt. Normalerweise werden die Sensorknoten, die diese Netzwerke bilden, von Batterien gespeist. Diese sollen aus verschiedenen Gründen nicht mehr verwendet werden, sondern es wird auf eine eigenständige Stromversorgung gesetzt. Dies soll den aufwendigen Austausch und die Wartung minimieren. Energy Harvesting kann mit den Knoten verwendet werden, um die Batterien zu unterstützen und die Lebensdauer der Netzwerke zu verlängern. Aufgrund der hohen Leistungsdichte der Solarenergie im Vergleich zu verschiedenen anderen Umweltenergien sind Solarzellen die am häufigsten eingesetzten Wandler, allerdings stellt die schwankende und intermittierende Natur der Solarenergie eine Herausforderung dar, einen funktionalen und zuverlässigen Sensorknoten zu versorgen. Um den Sensorknoten effektiv zu betreiben, sollte sein Energieverbrauch sinnvoll gesteuert werden. Ein interessanter Ansatz zu diesem Zweck ist die Steuerung der Aktivitäten des Knotens in Abhängigkeit von der zukünftig verfügbaren Energie. Dies erfordert eine Vorhersage der wandelbaren Sonnenenergie für die kommenden Betriebszeiten einschließlich der freien Zeiten der Sonne. Einige Vorhersagealgorithmen wurden mit stochastischen und statistischen Prinzipien sowie mit Methoden der künstlichen Intelligenz (KI) erstellt. Durch diese Algorithmen bleibt ein erheblicher Vorhersagefehler von 5-70%, der den zuverlässigen Betrieb der Knoten beeinträchtigt. Beispielsweise verwenden die stochastischen Methoden einen diskreten Energiezustand, der meist nicht zu den tatsächlichen Messwerten passt. Die statistischen Methoden verwenden einen Gewichtungsfaktor für die zuvor registrierten Messwerte. Daher sind sie nur geeignet, um Energieprofile bei konstanten Wetterbedingungen vorherzusagen. KI-Methoden erfordern große Beobachtungen im Trainingsprozess, die den benötigten Speicherplatz erhöhen. Dementsprechend ist die Leistung hinsichtlich der Vorhersagegenauigkeit dieser Algorithmen nicht ausreichend. In dieser Arbeit wird ein Vorhersagealgorithmus mit einem neuronalen Netzwerk entwickelt und eingebunden in einen Mikrocontroller, um die Verwaltung des Energieverbrauchs von solarzellengesteuerten Sensorknoten zu optimieren. Das verwendete neuronale Netzwerk wurde mit einer Kombination aus meteorologischen und statistischen Eingangsparametern realisiert. Dies hat zum Ziel, die erforderlichen Designkriterien für Sensorknoten zu erfüllen und eine Leistung zu erreichen, die in ihrer Genauigkeit die Leistung der oben genannten traditionellen Algorithmen übersteigt. Die Vorhersagegenauigkeit die durch den Korrelationskoeffizienten repräsentiert wird, wurde für das entwickelte neuronale Netzwerk auf 0,992 bestimmt. Das genaueste traditionelle Netzwerk erreicht nur einen Wert von 0,963. Das entwickelte neuronale Netzwerk wurde in einen Prototyp eines Sensorknotens integriert, um die Betriebszustände oder -modi über einen Simulationszeitraum von einer Woche anzupassen. Während dieser Zeit hat der Sensorknoten 6 Stunden zusätzlich im Normalbetrieb gearbeitet. Dies trug dazu bei, eine effektive Nutzung der verfügbaren Energie um ca. 3,6% besser zu erfüllen als das genaueste traditionelle Netz. Dadurch wird eine längere Lebensdauer und Zuverlässigkeit des Sensorknotens erreicht. / Wireless Sensor Network (WSN) is a technology that measures an environmental or physical parameters in order to use them by decision makers with a possibility of remote monitoring. Normally, sensor nodes that compose these networks are powered by batteries which are no longer feasible, especially when they used as fixed and standalone power source. This is due to the costly replacement and maintenance. Ambient energy harvesting systems can be used with these nodes to support the batteries and to prolong the lifetime of these networks. Due to the high power density of solar energy in comparison with different environmental energies, solar cells are the most utilized harvesting systems. Although that, the fluctuating and intermittent nature of solar energy causes a real challenge against fulfilling a functional and reliable sensor node. In order to operate the sensor node effectively, its energy consumption should be well managed. One interesting approach for this purpose is to control the future node’s activities according to the prospective energy available. This requires performing a prior prediction of the harvestable solar energy for the upcoming operation periods including the sun’s free times. A few prediction algorithms have been created using stochastic and statistical principles as well as artificial intelligence (AI) methods. A considerable prediction error of 5-70% is realized by these algorithms affecting the reliable operation of the nodes. For example, the stochastic ones use a discrete energy states which are mostly do not fit the actual readings. The statistical methods use a weighting factors for the previous registered readings. Thus, they are convenient only to predict energy profiles under consistent weather conditions. AI methods require large observations to be used in the training process which increase the memory space needed. Accordingly, the performance concerning the prediction accuracy of these algorithms is not sufficient. In this thesis, a prediction algorithm using a neural network has been proposed and implemented in a microcontroller for managing energy consumption of solar cell driven sensor nodes. The utilized neural network has been developed using a combination of meteorological and statistical input parameters. This is to meet a required design criteria for the sensor nodes and to fulfill a performance exceeds in its accuracy the performance of aforementioned traditional algorithms. The prediction accuracy represented by the correlation coefficient has been registered for the developed neural network to be 0.992, which increases the most accurate traditional network which has a value 0.963. The developed neural network has been embedded into a sensor node prototype to adjust the operating states or modes over a simulation period of one week. During this period, the sensor node has worked 6 hours more towards normal operation mode. This in its role helped to fulfill an effective use of available energy approximately 3.6% better than the most accurate traditional network. Thus, longer lifetime and more reliable sensor node.
10

Energy-aware localization based on an optimized anchor deployment in wireless sensor networks

El Houssaini, Dhouha 16 January 2023 (has links)
Various applications of Wireless Sensor Networks (WSNs) require accurate localization of sensor nodes. The quantity and locations of anchor nodes, which serve as reference points for distance estimates, as well as the localization process itself, affect the localization accuracy. Furthermore, because numerous communications are sent between nodes for localization, energy consumption must be considered. This work presents an energy-aware and accurate localization method. It is based on a combined anchor deployment and energy-aware localization. The proper number and distribution of anchors have been investigated to achieve full network coverage and connectivity based on an efficient and heterogeneous hexagonal deployment. Later, energy-aware localization is performed in three stages: Initialization, signal acquisition, and anchor selection. The initialization step allows the network to be adaptable to sudden changes by establishing anchor connectivity and creating the neighbors' list. Meanwhile, the Received Signal Strength Indicator (RSSI) is used for distance measurements between nodes, with the implementation of a Kalman filter to reduce signal attenuation and noise. Later, the anchor selection is done using fuzzy logic with inference parameters: RSSI, node density, and residual energy. This step ensures that only operable anchors engage in localization, while anchors with inadequate energy sources remain intact to ensure their future availability.:1 Introduction 2 Theoretical background 3 Energy-aware outdoor deployment and localization 4 Proposed anchor deployment method 5 Proposed energy-aware localization method 6 Experimental validation of the proposed localization method / Verschiedene Anwendungen von drahtlosen Sensornetzwerken (WSNs) erfordern eine genaue Lokalisierung von Sensorknoten. Die Anzahl und Standorte der Ankerknoten, die als Referenzpunkte für Entfernungsschätzungen dienen, sowie der Lokalisierungsprozess selbst beeinflussen die Lokalisierungsgenauigkeit. Da für die Lokalisierung zahlreiche Nachrichten zwischen den Knoten gesendet werden, muss außerdem der Energieverbrauch berücksichtigt werden. In dieser Arbeit wird eine energiebewusste und genaue Lokalisierungsmethode vorgestellt. Sie basiert auf einer Kombination aus effizienter Ankerknotennutzung und energiebewusster Lokalisierung. Die richtige Anzahl und Verteilung von Ankern wurde untersucht, um eine vollständige Netzabdeckung und Konnektivität auf der Grundlage einer effizienten und heterogenen hexagonalen Verteilung zu erreichen. Später wird die energiebewusste Lokalisierung in drei Stufen durchgeführt: Initialisierung, Signalerfassung und Ankerauswahl. Der Initialisierungsschritt ermöglicht es dem Netzwerk, sich an plötzliche Veränderungen anzupassen, indem es die Verbindung zu den Ankern und die Liste der Nachbarn erstellt. Zunächst wird der Received Signal Strength Indicator (RSSI) für die Entfernungsmessung zwischen den Knoten verwendet, wobei ein Kalman-Filter implementiert wird, um Signalabschwächung und Rauschen zu reduzieren. Später erfolgt die Ankerauswahl mit Hilfe von Fuzzy-Logik und Inferenzparametern: RSSI, Knotendichte und Restenergie. Dieser Schritt stellt sicher, dass nur funktionsfähige Anker an der Lokalisierung teilnehmen, während Anker mit unzureichenden Energiequellen intakt bleiben, um ihre zukünftige Verfügbarkeit zu gewährleisten.:1 Introduction 2 Theoretical background 3 Energy-aware outdoor deployment and localization 4 Proposed anchor deployment method 5 Proposed energy-aware localization method 6 Experimental validation of the proposed localization method

Page generated in 0.088 seconds