• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect  of peroperative skin preparation on bacterial growth during cardiac surgery

Falk-Brynhildsen, Karin January 2013 (has links)
Routine products are used and procedures are followed in order to prevent and minimize the bacterial contamination of the surgical wound, and thus reduce the risk of postoperative wound infections. The overall aim of this thesis was to investigate the effect of different preoperative skin preparation before cardiac surgery. In study I, 10 healthy volunteers were compared in time to recolonization of the skin and bacterial growth with or without plastic adhesive drape. Bacterial samples were taken as paired samples on both side of the sternum. Plastic drape on disinfected skin seems to hasten recolonization compared with bare skin. In study II, 135 cardiac surgery patients were comparing plastic adhesive drape versus bare skin on the chest regarding intra-operative bacterial growth. Plastic adhesive drape did not reduce the bacterial recolonization or wound contamination, P. acnes colonizes males more often than females and P. acnes is not affected by disinfection with 0.5% chlorhexidine in ethanol. Study III, compared the leg harvesting site with or without microbal skin sealant in 135 CABG patients regarding intraoperative bacterial growth and postoperative wound infection. Almost no bacterial growth was found during surgery regardless of the use of microbial skin sealant and bare skin. A high incidence of postoperative wound infections (16.8%) in 2 month follow up was present and SSI was largely caused by S. aureus, i.e. other bacterial species than observed intraoperative. Study IV, a descriptive study using phenotypic and genotypic methods investigate susceptibility to chlorhexidine among S. epidermidis indicating that S. epidermidis isolates following preoperative skin disinfection are sensitive tochlorhexidine.
2

Three dimensional simulation of cloth drape

Bricis, Anne January 1995 (has links)
Research has been carried out in the study of cloth modelling over many decades. The more recent arrival of computers however has meant that the necessary complex calculations can be performed quicker and that visual display of the results is more realistic than for the earlier models. Today's textile and garment designers are happy to use the latest two dimensional design and display technology to create designs and experiment with patterns and colours. The computer is seen as an additional tool that performs some of the more tedious jobs such as re-drawing, re-colouring and pattern sizing. Designers have the ability and experience to visualise their ideas without the need for photo reality. However the real garment must be created when promoting these ideas to potential customers. Three dimensional computer visualisation of a garment can remove the need to create the garment until after the customer has placed an order. As well as reducing costs in the fashion industry, realistic three dimensional cloth animation has benefits for the computer games and film industries. This thesis describes the development of a realistic cloth drape model. The system uses the Finite Element Method for the draping equations and graphics routines to enhance the visual display. During the research the problem of collision detection and response involving dynamic models has been tackled and a unique collision detection method has been developed. This method has proved very accurate in the simulation of cloth drape over a body model and is also described in the thesis. Three dimensional design and display are seen as the next logical steps to current two dimensional practices in the textiles industry. This thesis outlines current and previous cloth modelling studies carried out by other research groups. It goes on to provide a full description of the drape method that has been developed during this research period.
3

The construction of optimal drape surfaces with constrained first and second derivatives

Fossati, Reiner Justin 31 January 2003 (has links)
The need to construct optimal drape surfaces arises in airborne geophysical surveys where it is necessary to fly a safe distance above the ground and within the performance limits of the aircraft used, but as close as possible to the surface. The problem is formulated as an LP with constraints at every point of a grid covering the area concerned, yielding a very large problem. The objective of the LP is to create as "good" a surface as possible. This formulation is new, as previous methods did not aim to minimise an objective function. If the desired surface has only slope limitations, the resulting drape surface must be constrained in the first derivative. Such a drape surface is readily constructed using the Lifting Algoritlun. It is shown that the Litling Algorithm is both exact and has great speed advantages. Some numerical results confinning exacmcss and speed are presented, as is the algorithm's analogy to a flow network method. An enhanced lifting method with a better order of complexity is also proposed and tested numerically. In most practical situations a drape surface is required which has both first and second derivatives constrained. If only a cut through such a surface is considered, the problem can be solved with relative ease by exploiting its nctwork~Jike structure. This method fonns the basis of one of the preferred heuristics developed later. It was not possible to generalise this method to a full two~dimensional drape surface. A commercially available LP package fares better in finding the optimal solution. Several heuristic methods were examined. first a general heuristic method based on a lifting approach was developed. This was followed by a method using repeated application of the method used for sections (the Alternating One-dimensional Dual Algorithm ["AODA"]). Three heuristics based on thimbles were also designed. Thimbles are caps whose first and second derivatives are acceptable and which are placed over local infeasibilities in the topography The work ends with a chapter comparing the efficiency of various heuristics and comparing the results obtained using a number of test datasets. It was fOLmd that heuristic methods provide acceptable drape surfaces and that the choice lies between speed and accuracy, with a previously designed smoothing method being the fastesl and the AODA the most accurate and quick enough. / Operations Research / D.Phil.
4

The construction of optimal drape surfaces with constrained first and second derivatives

Fossati, Reiner Justin 31 January 2003 (has links)
The need to construct optimal drape surfaces arises in airborne geophysical surveys where it is necessary to fly a safe distance above the ground and within the performance limits of the aircraft used, but as close as possible to the surface. The problem is formulated as an LP with constraints at every point of a grid covering the area concerned, yielding a very large problem. The objective of the LP is to create as "good" a surface as possible. This formulation is new, as previous methods did not aim to minimise an objective function. If the desired surface has only slope limitations, the resulting drape surface must be constrained in the first derivative. Such a drape surface is readily constructed using the Lifting Algoritlun. It is shown that the Litling Algorithm is both exact and has great speed advantages. Some numerical results confinning exacmcss and speed are presented, as is the algorithm's analogy to a flow network method. An enhanced lifting method with a better order of complexity is also proposed and tested numerically. In most practical situations a drape surface is required which has both first and second derivatives constrained. If only a cut through such a surface is considered, the problem can be solved with relative ease by exploiting its nctwork~Jike structure. This method fonns the basis of one of the preferred heuristics developed later. It was not possible to generalise this method to a full two~dimensional drape surface. A commercially available LP package fares better in finding the optimal solution. Several heuristic methods were examined. first a general heuristic method based on a lifting approach was developed. This was followed by a method using repeated application of the method used for sections (the Alternating One-dimensional Dual Algorithm ["AODA"]). Three heuristics based on thimbles were also designed. Thimbles are caps whose first and second derivatives are acceptable and which are placed over local infeasibilities in the topography The work ends with a chapter comparing the efficiency of various heuristics and comparing the results obtained using a number of test datasets. It was fOLmd that heuristic methods provide acceptable drape surfaces and that the choice lies between speed and accuracy, with a previously designed smoothing method being the fastesl and the AODA the most accurate and quick enough. / Operations Research / D.Phil.
5

Pre-Stack Seismic Inversion and Amplitude Variation with Offset (AVO) Attributes as Hydrocarbon Indicators in Carbonate Rocks: A Case Study from the Illinois Basin

Murchek, Jacob T. 11 May 2021 (has links)
No description available.
6

Line, Space and Plane

Howell, Amy Beth 25 November 2009 (has links)
No description available.
7

Draped Interiors

Nold, Michael George 31 May 2016 (has links)
No description available.
8

MODELISATION MATHEMATIQUE ET SIMULATION NUMERIQUE DU DRAPE D'UN TEXTILE

Fare, Nadjombe 26 June 2002 (has links) (PDF)
L'objectif de ce travail est d'étudier la dé<br />formation d'un tissu posé sur un support bi- ou tri-dimensionnel et soumis à<br />son propre poids.<br />Dans la première partie, nous établissons les équations<br />d'équilibre de ce problème dans le cas général et<br />introduisons deux modèles mathématiques. Le premier est un<br />modèle membranaire non-linéaire, dont l'analyse mathématique<br />conduit au calcul de l'enveloppe quasi-convexe de la densité<br />d'énergie associée. Le deuxième modèle (modèle<br />membrane-flexion non-linéaire) est obtenu en ajoutant un terme<br />régularisant à une fonctionnelle énergie non coercive. Nous<br />prouvons l'existence d'au moins une solution de ce problème de<br />minimisation, en utilisant les techniques du Calcul des Variations. Enfin,<br />nous établissons l'existence de solutions pour le problème de<br />drapé tri-dimensionnel.<br />La seconde partie est consacrée à la résolution numérique des diffé%<br />rents modèles élaborés dans la première partie, au moyen d'une méthode ité%<br />rative de descente couplée avec une méthode multigrille, afin d'accélérer la<br />convergence de l'algorithme. Nous montrons que le problème discret admet au<br />moins une solution. Enfin, nous prouvons la convergence théorique d'une<br />sous-suite de solutions discrètes vers une solution du problème continu,<br />moyennant une hypothèse de densité.

Page generated in 0.0316 seconds