Spelling suggestions: "subject:"drifting laplace""
1 |
Desigualdades universais para autovalores do polidrifting laplaciano em dominios compactos do R^n e S^n / Universal bounds for eigenvalues of the poli-drifting laplaciano operators ìn compact domains in the R^n and S^nPereira, Rosane Gomes 08 March 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-05-05T20:05:47Z
No. of bitstreams: 2
Tese - Rosane Gomes Pereira - 2016.pdf: 1460804 bytes, checksum: bde81076cac51b848a33cb0c0f768798 (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-06T11:39:46Z (GMT) No. of bitstreams: 2
Tese - Rosane Gomes Pereira - 2016.pdf: 1460804 bytes, checksum: bde81076cac51b848a33cb0c0f768798 (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) / Made available in DSpace on 2016-05-06T11:39:46Z (GMT). No. of bitstreams: 2
Tese - Rosane Gomes Pereira - 2016.pdf: 1460804 bytes, checksum: bde81076cac51b848a33cb0c0f768798 (MD5)
license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5)
Previous issue date: 2016-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study eigenvalues of poly-drifting laplacian on compact
Riemannian manifolds with boundary (possibly empty). Here, we bring a
universal inequality for the eigenvalues of the poly-drifting operator on compact
domains in an Euclidean spaceRn. Besides,weintroduce universal inequalities for
eigenvalues of poly-drifting operator on compact domains in a unit n-sphere Sn.
We give an universal inequality for lower order eigenvalues of the poly-drifting
operator inRn and Sn. Moreover, we prove an universal inequality type Ashbaugh
and Benguria for the drifting Laplacian on Riemannian manifold immersed in an
unit sphere or a projective space. Let
be a bounded domain in a n-dimensional
Euclidean space Rn. We study eigenvalues of an eigenvalue problem of a system
of elliptic equations of the drifting laplacian
8>><>>:
L u+ (r(divu)r divu) = ¯ u; in
;
uj@
= 0
Estimates for eigenvalues of the above eigenvalue problem are obtained. Furthermore,
a universal inequality for lower order eigenvalues of the problem is also
derived. / Neste trabalho, estudamos autovalores do polidrifting Laplaciano em variedades
Riemannianas compactas com fronteira (possivelmente vazia). Aqui, trazemos
uma desigualdade universal para autovalores do polidrifting operador em
domínios compactos no espaço Euclidiano Rn. Além disso, introduzimos desigualdades
universais para autovalores do polidrifting operador em domínios
compactos na n-esfera unitária Sn. Fornecemos uma estimativa para autovalores
de ordem inferior do polidrifting operador emRn e Sn. Mais ainda, provamos uma
desigualdade universal do tipo Ashbaugh-Benguria para o drifting Laplacianoem
variedades Riemannianas imersas em uma esfera unitária ou no espaço projetivo.
Seja
um domínio limitado no n-dimensional espaço Euclidiano Rn. Estudamos
autovalores de um problema de autovalores de um sistema de equações elípticas
do drifting Laplaciano
8>><>>:
L u+ (r(divu)r divu) = ¯ u; in
;
uj@
= 0
Estimativas para autovalores do problema de autovalores acima são obtidas. Além
disso, uma desigualdade universal de ordem inferior também é encontrada.
|
2 |
Comparaison de valeurs propres de Laplaciens et inégalités de Sobolev sur des variétés riemanniennes à densité / Eigenvalue comparison for Laplacians and Sobolev inequalities on weighed Riemannian manifoldsShouman, Abdolhakim 03 July 2017 (has links)
Le but de cette thèse est triple : INÉGALITÉS DE SOBOLEV AVEC DES CONSTANTES EXPLICITES SUR DES VARIÉTÉS RIEMANNIENNES À DENSITÉ ET À BORD CONVEXE : On obtient des inégalités de Sobolev à densité, avec des constantes géométriques explicites pour des variétés à courbure de m-Bakry-Émery Ricci minorée par une constante positive et à bord convexe. Ceci permet de généraliser de nombreux résultats connus dans le cas riemannien aux variétés avec densité. Nous montrons aussi comment déduire des inégalités de Sobolev obtenues, un résultat d’isolement pour les applications f -harmoniques. Nous présenterons également une nouvelle et très simple méthode pour la preuve de l’inégalité de Moser-Trudinger-Onofri [Onofri, 1982] dans le cas du disque euclidien. / The purpose of this thesis is threefold: SOBOLEV INEQUALITIES WITH EXPLICIT CONSTANTS ON A WEIGHTED RIEMANNIAN MANIFOLD OF CONVEX BOUNDARY: We obtain weighted Sobolev inequalities with explicit geometric constants for weighted Riemannian manifolds of positive m-Bakry-Emery Ricci curvature and convex boundary. As a first application, we generalize several results of Riemannian manifolds to the weighted setting. Another application is a new isolation result for the f -harmonic maps. We also give a new and elemantry proof of the well-known Moser-Trudinger-Onofri [Onofri, 1982] inequality for the Euclidean disk.
|
Page generated in 0.0551 seconds