Spelling suggestions: "subject:"driftstörning"" "subject:"kraftstyrning""
1 |
EFFEKTIVISERING AV ENERGIANVÄNDNING FÖR MARKVÄRME MED HJÄLP AV VÄDERPROGNOSER / IMPROVING ENERGY EFFICIENCY FOR GROUND HEATING USING WEATHER FORECASTSDalberg, Niklas January 2023 (has links)
Markvärme används för att hålla bland annat gångvägar och parkeringshus fria från snö och is. Dessa system styrs oftast baserat på momentan data hämtat direkt från anläggningen. Dessa markvärmesystem förbrukar stora mängder energi och syftet med detta projekt var att baserat på framtida väderprognoser optimalt och individuellt styra driften för att minimera energiförbrukningen. Baserat på momentan marktemperatur och framtida väderprognoser går det att skapa en modell över markens framtida temperatur. Med hjälp av den framtida marktemperaturen samt tidigare och framtida nederbördsintensiteten går det att identifiera potentiellt farliga förhållanden som kommer att kräva markvärme. När detta behov är identifierat beräknas den tid det kommer ta att värma upp marken till en bestämd temperatur och smälta all nederbörd som befinner sig på marken. När all nederbörd har smält börjar processen att torka marken. Med en ytavrinningsfaktor på 0.9 antas det att 90% av all nederbörd kommer att rinna av från vägen. Baserat på marktemperaturen och diverse olika väderparametrar beräknas avdunstningstiden för de resterande 10% av nederbörd som fortfarande är kvar på marken. När all nederbörd har avdunstat och ingen ny nederbörd är väntad inom tre timmar så anses marken vara torr och systemet går ur drift. Systemet testades med data från februari 2023 och jämfördes med driften av markvärmen hos en av GateIBS anläggningar. Logiken för start av drift testades separat från logiken för stopp av drift. Det nya systemet skulle starta driften två gånger under februari med en nederbördsgräns satt till 3mm och 5mm och tre gånger med nederbördsgränsen satt till 1mm. Detta är en drastisk minskning jämfört med det faktiska markvärmesystemet som gick i drift totalt tio gånger under samma månad. Logiken för stopp av drift testades enbart då det faktiska markvärmesystemet gick i drift och under hela månaden så skulle det nya systemet sammanlagt stoppat driften 50 timmar tidigare vilken är en minskning i tid av total drift med 29.2% och en minskning i förbrukad energi med 28.5%. / Ground heating is used to keep walkways and parking lots free from snow and ice. These systems are usually controlled based on real-time data obtained directly from the facility. These ground heating systems consume large amounts of energy, and the purpose of this project was to optimally and individually control the operation based on future weather forecasts in order to minimize energy consumption. Based on the current ground temperature and future weather forecasts, it is possible to create a model of the future temperature of the ground. Using the future ground temperature, as well as past and future precipitation intensity, it is possible to identify potentially hazardous conditions that will require ground heating. Once this need is identified, the time it will take to heat the ground to a specific temperature and melt all the precipitation on the ground is calculated. After all the precipitation has melted, the process of drying the ground begins. With a surface runoff factor of 0.9, it is assumed that 90% of all precipitation will run off from the road. Based on the ground temperature and various weather parameters, the evaporation time for the remaining 10% of precipitation still on the ground is calculated. When all the precipitation has evaporated and no new precipitation is expected within three hours, the ground is considered dry, and the system stops operating. The system was tested using data from February 2023 and compared with the operation of the ground heating system at one of GateIBS facilities. The logic for starting the operation was tested separately from the logic for stopping the operation. The new system would initiate the operation twice in February with a precipitation threshold set at 3mm and 5mm, and three times with the threshold set at 1mm. This is a drastic reduction compared to the actual ground heating system, which started a total of ten times during the same month. The logic for stopping the operation was tested only when the actual ground heating system was in operation, and throughout the month, the new system would have stopped the operation 50 hours earlier, resulting in a total reduction in operating time of 29.2% and a reduction in energy use by 28.5%.
|
2 |
Evaluation of CO2 Ice rink heat recovery system performanceThanasoulas, Sotirios January 2018 (has links)
Ice rinks are the largest energy consumers in terms of public buildings due to their simultaneous need of cooling, heating, ventilation, and lighting for different parts of the building which means that these facilities also have a lot of potential for energy saving. Due to the size of the cooling unit in an ice rink the refrigerant charge can become quite high, which potentially has a big impact on the environment. CO2 refrigeration units could cover all these challenges that are linked to ice rink operation. CO2 as a refrigerant has a very low impact on the environment and at the same time it could provide enough energy to cover the heating demands of an ice rink. CO2-based systems should operate in trans-critical mode which affects the performance of the refrigeration system, but by using the released heat that otherwise would be rejected to the ambience the total energy consumption becomes lower. The process of heat recovery is therefore vital for an efficient system. The refrigeration unit can produce enough energy to cover all the heating demands of an ice rink, but only when the heat recovery is controlled properly. The energy recovery method is very important, but it should also be tailored in order to cover all demands. This is because all the subsystems, i.e. demands, have different temperature and load requirements. The energy could be recovered in one or two stages from the refrigeration system. However, hardware is not enough in order to achieve proper operation, the system should also operate in the best conditions (discharge pressure and subcooling) in order to be efficient. The more proper operation, the less energy consumption. This energy recovery method could also be used as subcooling in climates where the ambient temperature is very high, making CO2 a very efficient solution. Regular refrigerants are still often used in warm countries despite their high environmental impact. A refrigeration system using natural refrigerants and more specific CO2 does not have constraints, however. The only limitation is the wrong operation. / Isrinkar är de största energikonsumenterna när det gäller offentliga byggnader på grund av deras ständiga behov av nedkylning, uppvärmning, ventilation och belysning. Detta innebär också att anläggningarna har en stor potential att effektivisera sin energibesparing. Isrinkar konsumerar stora mängder kylmedel på grund av deras storlekar, vilket potentiellt har en stor negativ inverkan på miljön. CO2 kylenheter skulle kunna klara av alla dessa utmaningar som är kopplade till isrinkens drift. Att använda CO2 som en kylarvätska har en ytterst liten inverkan på miljön och kan dessutom bidra med tillräckligt mycket energi för att täcka uppvärmningsbehovet för en isrink. CO2 baserade system bör köras i ett transkritiskt läge vilket påverkar kylsystemets prestanda, men genom att återanvända den utsläppta värmen som annars skulle gå förlorad till omgivningen så blir den totala energiförbrukningen lägre. Värmeåtervinningsprocessen är därför avgörande för ett effektivt energisystem. Kylaggregatet kan producera tillräckligt med energi för att täcka alla värmebehov för en isrink, men endast när värmeåtervinningen behärskas ordentligt. Energiåtervinningsmetoden är också väldigt viktig, men den bör skräddarsys för att täcka alla krav. Detta beror på att alla delsystem, dvs krav, har olika temperatur- och belastningskrav. Energin kan återvinnas i ett eller två stadier från kylsystemet. Tyvärr så räcker dock inte hårdvaran till för att uppnå en önskad drift, men systemet bör även fungera under de bästa förutsättningarna (utloppstryck och underkylning) för att vara effektiv. Ju bättre drift, desto mindre är energiförbrukningen. Denna energiåtervinningsmetod kan också användas som underkylning i varma klimat vilket gör CO2 till en mycket effektiv lösning. Vanliga typer av kylmedel används fortfarande ofta i varma länder trots att deras negativa miljöpåverkan. Ett kylsystem med ett naturligt kylmedel som till exempel koldioxid har emellertid inga begränsningar. Den enda begränsningen är den felaktiga hanteringen av driften.
|
Page generated in 0.0766 seconds