• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 397
  • 125
  • 85
  • 81
  • 63
  • 53
  • 13
  • 11
  • 10
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1023
  • 240
  • 149
  • 125
  • 122
  • 87
  • 79
  • 57
  • 56
  • 56
  • 54
  • 49
  • 48
  • 47
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Sex and Foot Posture Affects Ground Reaction Forces during a Single-leg Drop Landing

Eckburg, Meredith L. 29 July 2008 (has links)
No description available.
212

Effects of load shifting on water quality in a large potable water network / Francois Gysbert Jansen van Rensburg

Jansen van Rensburg, Francois Gysbert January 2015 (has links)
Mathematical analyses indicated that significant possibilities exist for load shifting projects on a Large Potable Water Utility (LPWU) in South Africa. A primary concern remained, i.e. whether the load variation would have an effect on the water quality. Extensive simulation and testing were initiated in order to prove that the load shift will not affect the water quality. In South Africa, the highest standard for drinking water is the Blue Drop award. The LPWU has received this award multiple times and strives to maintain it. An investigation was launched to determine if this load shifting project would have an effect on the quality standards to which the utility holds (SANS 241 (2011)). The LPWU has over 3000 km of pipelines to supply potable water to the industrial heartland of the country as well as millions of domestic users. The LPWU network is the longest pumping network in the world and is still expanding. The investigation included a simulation of a pumping simulation package to determine how the system would react to the changes. In this simulation, the load reduction in terms of Mega litre per day (Ml/day) was established. Results were compared to the normal operating parameters of the Water Treatment Works (WTW). The mathematical analysis in this investigation concluded that an evening peak load shift of 24.5 MW is achievable. This dissertation will emphasise the necessity of a detailed investigation. The investigations and simulation will determine that the volume of water is well within the operating parameters of the WTW. Studies were done on each area of the plant. In-depth conversations with WTW personnel revealed that the reduction of the volume of water in question will not have an effect on the water quality. Further, it was established that it would be possible to use the sumps of the water treatment works to achieve the desired load shift. By using the sumps of the WTW, a load shift can be done without stopping any process in the WTW with the exception of disinfection at the Booster Pump Stations (BPS), where the balancing reservoirs were used as buffer capacity. The investigation shifted to establish whether stagnant water and a change in dosage would have an effect on the water quality in regard to the reduction and recovery load. As expected, the water never became stagnant at any moment due to the fact that only a small portion of the load was reduced. The water quality and dosage report of the water utility was used and compared to normal operations. The planned load shift had no effect on any aspects of the water quality. The project is feasible and will reach the set targets without affecting the water quality. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
213

Effects of load shifting on water quality in a large potable water network / Francois Gysbert Jansen van Rensburg

Jansen van Rensburg, Francois Gysbert January 2015 (has links)
Mathematical analyses indicated that significant possibilities exist for load shifting projects on a Large Potable Water Utility (LPWU) in South Africa. A primary concern remained, i.e. whether the load variation would have an effect on the water quality. Extensive simulation and testing were initiated in order to prove that the load shift will not affect the water quality. In South Africa, the highest standard for drinking water is the Blue Drop award. The LPWU has received this award multiple times and strives to maintain it. An investigation was launched to determine if this load shifting project would have an effect on the quality standards to which the utility holds (SANS 241 (2011)). The LPWU has over 3000 km of pipelines to supply potable water to the industrial heartland of the country as well as millions of domestic users. The LPWU network is the longest pumping network in the world and is still expanding. The investigation included a simulation of a pumping simulation package to determine how the system would react to the changes. In this simulation, the load reduction in terms of Mega litre per day (Ml/day) was established. Results were compared to the normal operating parameters of the Water Treatment Works (WTW). The mathematical analysis in this investigation concluded that an evening peak load shift of 24.5 MW is achievable. This dissertation will emphasise the necessity of a detailed investigation. The investigations and simulation will determine that the volume of water is well within the operating parameters of the WTW. Studies were done on each area of the plant. In-depth conversations with WTW personnel revealed that the reduction of the volume of water in question will not have an effect on the water quality. Further, it was established that it would be possible to use the sumps of the water treatment works to achieve the desired load shift. By using the sumps of the WTW, a load shift can be done without stopping any process in the WTW with the exception of disinfection at the Booster Pump Stations (BPS), where the balancing reservoirs were used as buffer capacity. The investigation shifted to establish whether stagnant water and a change in dosage would have an effect on the water quality in regard to the reduction and recovery load. As expected, the water never became stagnant at any moment due to the fact that only a small portion of the load was reduced. The water quality and dosage report of the water utility was used and compared to normal operations. The planned load shift had no effect on any aspects of the water quality. The project is feasible and will reach the set targets without affecting the water quality. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
214

Establishing a facility to measure packed column hydrodynamics

Lamprecht, Sarel Marais 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Distillation continues to be the most widely used method of separation in the processing industry, in spite of its inherently low thermodynamic efficiency. Two of the critical distillation research needs that arose from the US-Initiative Vision 2020 were to develop a better understanding of the physical phenomena as well as developing better predictive models. Also, characterisation of modern packing materials is required to assist in the CO2 capture optimisation. This thesis deals with both these aspects by establishing a facility that can accurately measure the hydraulic capacity of packed columns. This setup eliminates mass transfer and specific attention can be given to the hydrodynamic behaviour of packed columns. Two phenomena that have a large impact on the mass transfer efficiency of packing materials are the loading and flooding point. The loading point is signified by the following: a.) where the packed column hold-up increases, b.) higher increase in pressure drop, and c.) a decrease in Height Equivalent to a Theoretical Plate (HETP). The onset of flooding is where the shear forces between the gas and liquid become so large (relative to the gravitational forces) that a net upwards movement of liquid occurs, resulting in liquid droplets being heavily entrained. This is normally accompanied by a sharp increase in HETP, pressure drop and liquid hold-up. The prediction of these operating limits is of great value but, despite the many contributions that were made from 1960 to 2010, there is still room for improvement. The operating region of particular interest is between the loading and flooding point, especially for fluids with physical properties significantly different from that of water. In the past, this operating region was not of great importance, but industries are constantly striving to increase their production with minimal capital expenditure. Thus, packed columns are being pushed to their limits and a good understanding of the phenomena occurring near these operational limits is now required. A 400 mm diameter glass packed bed setup (with a bed height of 3000 mm) was designed and constructed to test the effect of the following parameters on packed bed pressure drop and liquid hold-up: · Gas and liquid physical properties · Gas and liquid rates · Type of packing (either random or structured) The experimental setup has been designed so that in the future the influences of the above mentioned parameters on entrainment can also be measured. Initially, hydrodynamic tests on random packing materials (1.5” Pall® Rings, 1.5” IMTP®, 1.5” Intalox® Ultra™) were conducted over a liquid range of 6 - 122 m3/(m2·h). Through a thorough literature study it was found that the most likely semi-theoretical model, that would be able to predict the pressure drop and the liquid hold-up over most of the random packing test range, was the model developed by Billet [1991; 1993; 1995; 1999]. The other models found throughout the literature had at least one of the following deficiencies: · Limited to only the pre-loading region. · Tested (and thus applicable) only over a very select group of packing materials with no attempt to generalise. · Lacked the proper validation of significantly variable fluid properties over multitudes of liquid and gas rates especially, at higher gas and liquid rates. The experimental setup was successfully commissioned, noting the following maximum experimental errors: Vapour flow factor - 2.6 %; liquid rate - 0.75 %; packed bed pressure drop - 0.75 %; liquid hold-up - 1.25 % and entrainment - 1.05 %. Significant deviations were observed between the experimental hold-up and the hold-up from the predictive model of Billet (using Pall® Rings). Careful inspection revealed that this predictive model potentially uses two definitions for hold-up at flooding, one which has a theoretical basis and the other purely empirical. Upon substituting the theoretical value with the empirical value, a significant improvement was observed between the measured and predicted results. Deviations were still observed near the flooding point and were attributed to the difficulty of obtaining reliable flooding data. The range of liquid hold-up prediction by Billet was only verified up to a liquid rate of 82 m3/(m2·h) and the pressure drop prediction only verified up to a liquid rate of 60 m3/(m2·h). This reinforces the need for high liquid, high gas rate data. Due to the empirical nature of the liquid hold-up at flooding prediction, and since pressure drop prediction is directly linked to liquid hold-up, another model was used to compare the experimental pressure drop data. The KG-TOWER® simulator was used to predict IMTP® data and compare it to the experimentally measured values. It was found that the experimental IMTP® data followed the same trends as those from KG-TOWER® within the operating limits of the program. Thus, since the experimental data follows similar trends as models found in the literature, as well as falling within their reliable limits, the experimental setup can correctly measure the parameters in question. The experimental data from the different random packings were compared to one another by using a statistical method to determine the loading point and onset of flooding. This method uses prediction confidence intervals by fitting empirical curves to each operating region and was found to be useful in determining these critical points from experimental hydraulic data (in the absence of HETP data).The only useful comparison was between IMTP® and Intalox® Ultra™ as they both have roughly the same density, size and void fraction. It was found that, on average, the pressure drop of Intalox® Ultra™ is 20 % lower than that of IMTP® over the entire operating range. The hydraulic operating range of Intalox® Ultra™ was found to be on average 16 % larger than that of IMTP®. It is recommended that further testing should be done to investigate the influence of fluid properties (specifically liquid viscosity and to a lesser extent surface tension) on the hydraulic capacity of packed columns. Also, high gas and high liquid rate data should be generated to assist current modelling techniques. Lastly, a comparative characterisation between Intalox® Ultra™ and Raschig Super-Rings would serve as a benchmark for fourth generation random packings. / AFRIKAANSE OPSOMMING: Distillasie is vandag nog die skeidingsproses wat die meeste gebruik word in the prosesnywerhede ten spyte van ‘n lae termodinamiese effektiwiteit. Twee van die kritieke distillasie navorsing behoeftes wat vanuit die US-Initiative Vision 2020 ontstaan het, was om die fisiese verskynsels beter te verstaan, asook om beter voorspellende modelle te ontwikkel. Die karakterisering van moderne pakking materiale is ook nodig vir die optimering van die verwydering van CO2 uit uitlaatstrome. Hierdie tesis spreek beide van hierdie faktore aan deur ‘n fasiliteit op te rig wat die hidrouliese kapasiteit van gepakte kolomme akkuraat kan meet. Hierdie opstelling elimineer massa-oordrag en dus kan spesifieke aandag gegee word aan die hidrodinamiese gedrag van gepakte kolomme. Twee verskynsels wat ‘n groot impak het op die massaoordrag effektiwiteit van pakkingsmateriale is die ladingspunt en die vloedpunt. Die ladingspunt word deur die volgende gekenmerk: a.) waar die vloeistof inhoud in die gepakte bed toeneem, b.) ‘n toename in drukval en c.) ‘n afname in die hoogte ekwivalent aan ‘n teoretiese plaat (HETP). Die vloed gebied word gekenmerk waar die skuifkragte tussen die vloeistof en gas so groot raak (relatief tot die gravitasionele kragte), dat daar ‘n netto opwaartse beweging van vloeistof druppels in die kolom is. Hierdie gaan normaalweg gepaard met ‘n skerp toename in HETP, drukval en vloeistof inhoud. Die voorspelling van hierdie bedryfslimiete is baie waardevol, maar ten spyte van die bydrae wat tussen 1960 en 2010 gemaak was, is daar nog steeds ruimte vir verbetering. Die spesifieke bedryfsgebied van belang is die gebied tussen die ladingspunt en die vloedpunt en spesifiek vir sisteme waar die fisiese eienskappe van die vloeistowwe drasties verskil van die van water. In die verlede was hierdie gebied van minder belang gewees, maar maatskappye probeer deesdae hul produksie opstoot met minimale kapitale uitleg. Dus is ‘n goeie kennis van massa-oordrag verskynsels naby aan die bedryfslimiete van kardinale belang. ‘n 400 mm Diameter gepakte kolom (met ‘n bed hoogte van 3000 mm en bestaande uit glas) opstelling is ontwerp en gebou om die effek van die volgende parameters te toets op gepakte bed drukval en vloeistof inhoud: · Gas en vloeistof fisiese eienskappe · Gas vloeistof vloeitempos · Tipe pakking (beide ongeordend en gestruktureerd) Die eksperimentele opstelling is ontwerp om die bogenoemde eienskappe op vloeistofmeesleuring te meet vir toekomstige navorsing. Hidrodinamiese toetse op ongeordende pakkingsmateriale (1.5” Pall® Ringe, 1.5” IMTP®, 1.5” Intalox® Ultra™) is uitgevoer vir vloeistof vloeitempos tussen 6 en 122 m3/(m2·h). Vanuit ‘n deeglike literatuurstudie is daar gevind dat die mees toepaslike semi-teoretiese model, wat die drukval sowel as die vloeistof inhoud kan voorspel oor al die bedryfsgebiede, is die model wat deur Billet [1991; 1993; 1995; 1999] ontwikkel is. Die ander modelle in die literatuur het ten minste een van die volgende tekortkominge gehad: · Is slegs van toepassing in die voor-ladings gebied. · Is slegs van toepassing vir ‘n paar pakkingsmateriale en geen poging is aangewend om dit te veralgemeen nie. · Is nie geldig waar die vloeistof eienskappe drasties verskil van ‘n lug/water sisteem nie, sowel as by hoë gas en vloeistof vloeitempos. Die eksperimentele opstelling is suksesvol in werking gestel met die volgende waargenome eksperimentele foute: Gas vloei faktor – 2.6 %; vloeistof vloeitempo – 0.75 %; gepakte bed drukval – 0.75 %; vloeistof inhoud – 1.25 %; vloeistof-meesleuring tempo – 1.05 %. Noemenswaardige verskille is waargeneem tussen die eksperimentele en teoretiese vloeistof inhoud (deur Pall® Ringe te gebruik). Na gelang van noukeurige inspeksie, is daar gevind dat die Billet-model twee moontlike definisies voorstel vir die voorspelling van vloeistofinhoud by die vloedpunt. Een van hierdie is teoreties van aard en die ander een suiwer empiries. ‘n Vervanging van die teoretiese waardes met die empiriese waardes het gelei tot ‘n merkwaardige verbetering tussen die eksperimentele en teoretiese voorspellings. Daar was nog steeds verskille naby aan die vloedpunt, maar dit kon toegeskryf word aan die feit dat min betroubare data naby aan die vloedpunt beskikbaar is. Die voorspelling van vloeistof inhoud deur Billet is slegs gekontroleer tot ‘n vloeistof vloeitempo van 82 m3/(m2·h) en die drukval slegs tot ‘n vloeistof vloeitempo van 60 m3/(m2·h). Die bogenoemde bewys dus die tekort aan hoë gas- en hoë vloeistofvloeitempo data. Die voorspellende model se drukval is gekoppel aan die vloeistof inhoud, en dus is ‘n ander model gebruik om die eksperimentele drukval data teen te vergelyk. Die KG-TOWER® simulasie program is gebruik om die IMTP® drukval te voorspel en dit het goed vergelyk met die eksperimentele data. Dus, aangesien die eksperimentele data dieselfde tendens toon as dié van die modelle in die literatuur en aangesien dit binne die modelle se foutbande val, kan die eksperimentele opstelling die verlangde parameters akkuraat meet. Die eksperimentele data van al drie pakkingsmateriale is teenoor mekaar vergelyk deur gebruik te maak van ‘n statistiese metode wat die ladings- en vloedpunt bepaal. Hierdie metode maak gebruik van voorspellings vertroue intervalle deur empiriese kurwes op die eksperimentele data in elke bedryfsgebied te pas. Hierdie metode is ontwikkel om toepaslike te wees in die afwesigheid van HETP data. Die enigste nuttige vergelyking is tussen IMTP® en Intalox® Ultra™ omdat albei dieselfde pakkingsdigtheid, grootte en pakkings oop ruimte het. Daar is gevind dat die drukval van Intalox® Ultra™ ‘n gemiddeld van 20 % laer is as dié van IMTP® oor die hele bedryfsgebied. Die hidrouliese bedryfsgebied van Intalox® Ultra™ is 16 % groter as dié van IMTP®. Daar word voorgestel dat bykomende toetswerk gedoen moet word om die invloed van vloeistof eienskappe (spesifiek vloeistof viskositeit en vloeistof oppervlak spanning) op die hidrouliese kapasiteit van gepakte kolomme te ondersoek. Bykomende toestwerk by hoë gas- en hoë vloeistofvloeitempo word benodig om die bestaande modelle aan te vul. Laastens, sal ‘n vergelykende studie tussen Intalox® Ultra™ en Raschig Super-Rings die grondslag lewer vir die karakterisering van vierde generasie ongeordende pakkingsmateriale.
215

Modeling, design, fabrication and reliability characterization of ultra-thin glass BGA package-to-board interconnections

Singh, Bhupender 27 May 2016 (has links)
Recent trends to miniaturized systems such as smartphones and wearables, as well as the rise of autonomous vehicles relying on all-electric and smart in-car systems, have brought unprecedented needs for superior performance, functionality, and cost requirements. Transistor scaling alone cannot meet these metrics unless the remaining system components such as substrates and interconnections are scaled down to bridge the gap between transistor and system scaling. In this regard, 3D glass system packages have emerged as a promising alternative due to their ultra-short system interconnection lengths, higher component densities and system reliability enabled by the tailorable coefficient of thermal expansion (CTE), high dimensional stability and surface smoothness, outstanding electrical properties and low-cost panel-level processability of glass. The research objectives are to demonstrate board-level reliability of large, thin, glass packages directly mounted on PCB with conventional BGAs at pitches of 400µm SMT and smaller. Two key innovations are introduced to accomplish the objectives: a.) Reworkable circumferential polymer collars providing strain-relief at critical high stress concentration areas in the solder joints, b.) novel Mn-doped SACMTM solder to provide superior drop test performance without degrading thermomechanical reliability. Modeling, package and board design, fabrication and reliability characterization were carried out to demonstrate reliable board-level interconnections of large, ultra-thin glass packages. Finite-element modeling (FEM) was used to investigate the effectiveness of circumferential polymer collars as a strain-relief solution on fatigue performance. Experimental results with polymer collars indicated a 2X improvement in drop performance and 30% improvement in fatigue life. Failure analysis was performed using characterization techniques such as confocal surface acoustic microscopy (C-SAM), optical microscopy, X-ray imaging, and scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). Model-to-experiment correlation was performed to validate the effectiveness of polymer collars as a strain-relief mechanism. Enhancement in board-level reliability performance with advances in solder materials based on Mn-doped SACMTM is demonstrated in the last part of the thesis.The studies, thus, demonstrate material, design and process innovations for package-to-board interconnection reliability with ultra-thin, large glass packages.
216

Evaluation of drop break-up after impingement on horizontal slat grids and the effect of drop size of cooling tower rain zone performance

Terblanche, Riaan 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Natural draught wet-cooling tower rain zone performance can be significantly enhanced by reducing the mean drop size in the rain zone with the installation of specially designed grids below the cooling tower fill. Drops enter the rain zone in the form of a polydisperse drop distribution, dripping from below the cooling tower fill, comprising relatively large drops. In order to design and optimize a grid for breaking up these drops, the mechanisms of drop break-up after impingement on the grid surface, referred to as splashing, straddling and dripping, need to be clearly understood. Two of these mechanisms, splashing and straddling, are therefore investigated experimentally using high speed video cameras to measure initial drop sizes, mass fractions and drop size distributions after impingement on different horizontal slats covered with a thin layer of water. The following parameters are varied independently for these experiments: drop fall distance, initial drop size, slat width and the water film thickness on the slats. Dripping from below the grid, is investigated theoretically. The effect of drop interaction on the drop size distribution in the rain zone is also investigated experimentally by measuring the drop distributions at the top and bottom of rain zones with a height of approximately 7.05 m to 7.65 m for different inlet distributions. The experimental drop break-up data, numerically obtained splash drop trajectory data and drop interaction data found in literature are used to develop a theoretical model of a purely counter flow cooling tower rain zone with and without installed grids. The model is compared to experimental data and theoretical data from literature and the predicted thermal and dynamic behaviour of the rain zone are generally found to be in good agreement with these results. Ultimately, this model is used for the optimization of the grid layout in terms of variables such as distance between the grid and the fill, slat width, slat spacing and slat height. It is found that the best drop break-up is achieved for grids comprising narrower slats with lower grid porosities as opposed to grids comprising wider slats. For the determined optimal grid layout it is found that a significant improvement in cooling tower performance can be achieved. / AFRIKAANSE OPSOMMING: Nat-koeltoringreënsonevermoë kan aansienlik verhoog word deur die druppelgrootte in hierdie gebied te verklein deur roosters, wat spesifiek vir hierdie doel ontwerp is, onder die pakkingsmateriaal te installeer. Die inlaatdruppelverdeling aan die bokant van die reënsone bestaan uit ‘n verdeling van relatief groot druppels wat drip van die onderkant van die pakkingsmateriaal. Ten einde ‘n rooster te ontwerp en te optimeer wat hierdie druppels kan opbreek moet die meganismes van druppelopbreking, bekend as spatting, vurking en drip goed verstaan word. Spatting en vurking is om hierdie rede eksperimenteel ondersoek, met behulp van hoëspoed videokameras. Die volgende veranderlikes is onafhanklik verander tydens hierdie eksperimente: valafstand van die druppel, aanvanklike druppelgrootte, latwydte en die dikte van die lagie water bo-op die lat. Die dripmeganisme aan die onderkant van die rooster is slegs teoreties ondersoek. Die effek wat druppelinteraksie in die reënsone het op die druppelgrootte is ondersoek deur die druppelgroottes aan die bo- en onderkant van ‘n 7.05 m tot 7.65 m reënsone te meet vir verskillende druppelinlaatverdelings. Die eksperimentele druppeldata, sowel as numeries berekende data wat die snelheid en trajek van spatdruppels beskryf, tesame met data vir druppelinteraksies wat uit die literatuur verkry is word gebruik om ‘n teoretiese model te ontwikkel vir ‘n suiwer teenvloei koeltoringreënsone met en sonder roosters. Hierdie model word vergelyk met eksperimentele data en data wat uit die literatuur verkry is en daar is gevind dat daar oor die algemeen ‘n goeie ooreenstemming is tussen die voorspelde en gemete termiese en dinamiese gedrag van die reënsone. Uiteindelik word die model gebruik vir die optimering van die rooster in terme van die volgende veranderlikes: afstand tussen rooster en pakkingsmateriaal, latwydte, latspasiëring en lathoogte. Daar word gevind dat beter druppelopbreking verkry word deur gebruik te maak van smaller latte en ‘n laer roosterporeusiteit. Daar is gevind dat die bepaalde optimale roosteruitleg in die reënsone van ‘n koeltoring ‘n wesenlike verbetering in koeltoringvermoë tot gevolg kan hê.
217

Comparative analysis of predictive equations for transfer processes in different porous structures

Woudberg, Sonia 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Research on transfer processes in various types of porous media has become important for the optimization of high technology engineering devices and processes. In this study the micro-structural parameters of different types of porous media, namely granular media, foamlike media and fibre beds, are characterized and quantified. Existing analytical modelling procedures for the three different types of porous media have been unified and refined to improve their predictive capabilities. Deterministic equations are proposed for predicting the streamwise pressure gradient, permeability and inertial coefficient of each type of porous medium. The equations are applicable over the entire porosity range and steady laminar flow regime and well suited as drag models in numerical computations. It is shown that the improved granular model can be regarded as qualitative and quantitative proof of the extensively used semi-empirical Ergun equation. The proposed model is used to provide physical meaning to the empirical coefficients. An Ergun-type equation is also proposed for foamlike media by remodelling the interstitial geometric configuration and accompanying flow conditions. The range of applicability of the existing foam model has been extended by incorporating the effect of developing flow in the pressure drop prediction. An equation is proposed in which the variation in the cross-sectional shape of the fibres can be incorporated into the interstitial form drag coefficient used in the foam model. This serves as an improvement on the constant value previously used. The existing foam model is also adapted to account for anisotropy resulting from compression. Two case studies are considered, namely compression of a non-woven glass fibre filter and compression of a soft polyester fibre material. The significant effect of compression on permeability is illustrated. In each case study the permeability values range over more than an order of magnitude for the narrow porosity ranges involved. The pressure drop prediction of the foam model is furthermore adapted to account for the combined effects of compression and developing flow. The newly proposed model diminishes the significant over-prediction of the existing foam model. An equation is furthermore proposed for predicting the permeability of Fontainebleau sandstones in which the effect of blocked throats is accounted for. Lastly, equations are proposed for predicting diffusivity ratios of unconsolidated arrays of squares and cubes. The prediction of the diffusivity ratio proposed in the present study, as opposed to model predictions from the literature, takes into account diffusion that may take place in stagnant fluid volumes. It is shown that a specific weighted average model proposed in the literature is not adequate to predict the diffusivity ratio of fully staggered arrays of squares, since it is shown not to be applicable to rectangular unit cells. Instead a new weighted average model is proposed which is applicable over the entire porosity range and for both staggered and non-staggered arrays of solid squares and cubes. The proposed weighted average model provides satisfactory agreement with experimental data from the literature and numerical data generated in the present study. / AFRIKAANSE OPSOMMING: Navorsing op oordragsprosesse in verskeie tipes poreuse media het belangrik geword vir die optimisering van ho¨e-tegnologie ingenieurstoestelle- en prosesse. In hierdie studie word die mikro-struktuur parameters van verskillende tipes poreuse media, naamklik korrelagtige media, sponsatige media en veselbeddens gekarakteriseer en gekwantifiseer. Bestaande analitiese modelleringsprosedures vir die drie verskillende tipes poreuse media is verenig en verfyn om die voorspelbare bekwaamheid daarvan te verbeter. Deterministiese vergelykings is voorgestel vir die voorspelling van die stroomsgewyse gradi¨ent, permeabiliteit en inersi¨ele ko¨effisi¨ent van elke tipe poreuse medium. Die vergelykings is geldig oor die hele porositeitsgrens en gestadigde laminˆere vloeigrens en goed geskik as weerstandsmodelle in numeriese berekeninge. Dit is aangetoon dat die verbeterde korrelmodel beskou kan word as kwalitatiewe en kwantitatiewe bewys van die ekstensiewe gebruikte semi-empiriese Ergun vergelyking. Die voorgestelde model is gebruik om fisiese betekenis aan die empiriese ko¨effisi¨ente te gee. ’n Ergun-tipe vergelyking is ook voorgestel vir sponsagtige media deur hermodellering van die tussenruimtelike geometriese konfigurasie en gepaardgaande vloeikondisies. Die grense van toepaslikheid van die bestaande sponsmodel is uitgebrei deur die inkorporering van die effek van ontwikkelende vloei in die voorspelling van die drukval. ’n Vergelyking is voorgestel waarin die variasie in die deursnit vorm van die vesels ingesluit is in die sponsmodel. Dit dien as verbetering op die konstante waarde wat voorheen gebruik is. Die bestaande sponsmodel is ook aangepas om voorsiening te maak vir anisotropie as gevolg van kompressie. Twee gevallestudies is oorweeg, naamlik kompressie van ’n nie-geweefde glasvesel filter en kompressie van ’n sagte polyester veselmateriaal. Die beduidende effek van kompressie op permeabiliteit is aangetoon. In elke gevallestudie strek die permeabiliteit waardes oor meer as ’n grootte orde vir die skrale porositeitgrense betrokke. Die drukvalvoorspelling van die sponsmodel is verder aangepas om voorsiening te maak vir die gekombineerde effekte van kompressie en ontwikkelende vloei. Die nuwe voorgestelde model verminder die beduidende oor-voorspelling van die bestaande sponsmodel. ’n Vergelyking is verder voorgestel vir die voorspelling van die permeabiliteit van Fontainebleau sandsteen waarin die effek van geblokte porie¨e in ag geneem is. Laastens is vergelykings voorgestel vir die voorspelling van die diffusiwiteitsverhoudings van nie-konsoliderende rangskikkings van vierkante en kubusse. Die diffusiwiteitsverhouding voorspel in die huidige studie, teenoor modelvoorspellings vanaf die literatuur, neem diffusie in ag wat plaasvind in die stagnante vloeistofvolumes. Dit is aangetoon dat ’n geweegde gemiddelde model, voorgestel in die literatuur, nie in staat is om die diffusiwiteitsverhouding van ten volle verspringende rangskikkings van vierkante te voorspel nie, aangesien dit nie toepaslik is vir reghoekige eenheidselle nie. ’n Nuwe geweegde model is in plaas daarvan voorgestel wat toepaslik is oor die hele porositeitsgrens en vir beide verspringende en nieverspringende rangskikkings van soliede vierkante en kubusse. Die voorgestelde geweegde gemiddelde model bied bevredigende ooreenstemming met eksperimentele data uit die literatuur en numeriese data gegenereer in die huidige studie.
218

Yield-stress drops

German, Guy January 2010 (has links)
The behaviour of viscoplastic drops during formation and detachment from a capillary nozzle, free-fall, impact on a solid substrate and subsequent spreading are investigated experimentally by high-speed imaging. Drop dynamic behaviour is an integral component of many contemporary industrial processes ranging from fuelinjection systems in combustion engines to spray coating, agrochemical and pharmaceutical delivery, fire extinguishment and ink-jet printing. Yield-stress fluids are commonly used nowadays in products ranging from mayonnaise to hair-gel. It is hoped that through understanding the dynamics of viscoplastic fluids, additional spray applications can be developed that will help to advance and optimise industrial processes. Viscoplastic fluids exhibit shear-thinning behaviour when the applied stress exceeds a certain threshold value, called the yield-stress. Below this threshold however, the fluid behaves like an elastic solid. By comparing the behaviour of viscoplastic drops with both Newtonian and shear-thinning fluids, yield-stress is shown to be capable of altering detachment behaviour, drop shape during free-fall, impact morphology and the final sessile shape of drops after spreading. For drops attached to the end of a capillary tube, growth continues until a maximum supportable tensile stress is reached in the drop neck. After this critical point, drops become unstable and detach. The critical break-up behaviour of low yield-stress drops is found to be similar to those of Newtonian and shear-thinning fluids. Above a threshold value however, characterised in terms of the ratio between yield-stress magnitude and capillary pressure, yield-stress forces exceed surface tension forces and the maximum tensile stress achievable in the drop neck at critical stability is governed by the extensional yield-stress, established using the von Mises criterion. This threshold value can also be used to characterise equilibrium drop shapes during free-fall. Whereas Newtonian, shear-thinning and low yield-stress fluids form near spherical equilibrium drop shapes, fluids above a threshold value become increasingly more prolate as the yield-stress increases. Upon impact, viscoplastic drops can exhibit central peaks at the end of inertial spreading. The influence of yield-stress magnitude on impact behaviour is qualitatively established by measuring the size of these peaks. Peaks indicate that deformation during impact is localized and within a threshold radius, shear stresses will not be large enough to overcome the yield-stress, therefore fluid within this region will not deform from the drop shape prior to impact. After impact, spreading will be dependent on the surface energy. Again, the ratio of the yield-stress magnitude to the capillary pressure can be used to characterise the final sessile drop shape. Whilst the equilibrium contact angle of Newtonian, shear-thinning and low yield-stress drops is independent of the yield-stress magnitude, above a threshold value, contact angles vary as a function of yield-stress magnitude. Whilst the research presented in this thesis highlights how fluid yield-stress can influence drop dynamics, some results are only qualitative. To establish more quantitative results, computational fluid dynamics methods should be used to examine viscoplastic drop dynamics. This research should focus primarily on impact behaviour, an aspect that has not received much attention previously. Modelling shear-thinning and viscoplastic fluid behaviour can be achieved by incorporating the relevant rheological models into the flow equations and examining impact morphology using a volume of fluid method. Numerical results can then be directly compared with the experimental results. Useful further experimentation could examine the relaxation behaviour of diamagnetically levitated viscoplastic drops. The results from this work could provide further insight into what rheological model best describes viscoplastic behaviour for shear-stresses below the yield-point.
219

Juvenile Delinquency, IDEA Disability, and School Drop Out in High School Students

Glennon, Sara Denise January 2009 (has links)
Over the past 10-15 years, the epidemiological research literature on juvenile delinquency has suggested that there is an over-representation of males and Hispanics within the juvenile justice system, and a disproportionate number of youths having an IDEA disability, including emotional disability, learning disability, and mental retardation. In addition, juvenile delinquents tend to perform lower academically than their peers, come from low socioeconomic status backgrounds, drop out of school more often, and frequently come into contact with law enforcement agencies. Moreover, low academic achievement, male gender, and drop out contribute to the increased chances that adolescents will become involved in delinquent activities. Characteristics of juvenile delinquents also tend to be stable over time and resistant to most types of intervention.The purpose of the present study was to examine whether there were significantly greater percentages of school drop out in adjudicated versus non-adjudicated delinquent high school youths with and without an IDEA disability diagnosis. Significant differences between standardized test scores of those adjudicated and non-adjudicated youths who dropped out versus remained in school were also examined. Other variables studied in conjunction with these included gender, minority, and free/reduced lunch status.Chi-Square Tests of Independence revealed a significant association between adjudication and drop out, regardless of disability, gender, minority, or free/reduced lunch status. Chi-Square results also showed a significant association between adjudication and disability, but for non-drop out delinquent youths only. Drop out and disability was found to be significantly associated for males only.Univariate Analyses of Variance revealed significant differences in AIMS Reading standard scores between delinquents who had, versus had not, been identified as having a disability. Significant differences in reading scores were also found between those identified, versus not identified as SLD. Furthermore, an interaction effect between disability and minority status was present. Similar differences were found with respect to AIMS Math scores. Limitations and implications of findings as well as future research directions were discussed.
220

Use of Drop-nets for Wild Pig Damage and Disease Abatement

Gaskamp, Joshua Alden 14 March 2013 (has links)
Numerous trap designs have been used in efforts to capture wild pigs (Sus scrofa); however, drop-nets have never been examined as a potential tool for wild pig control. I implemented a 2-year study to compare the effectiveness and efficiency of an 18.3 x 18.3 m drop-net and a traditional corral trap for trapping wild pigs. In spring 2010, treatment units were randomly selected and multiple trap sites were identified on 4,047 ha in Love County, Oklahoma. Trap sites were baited with whole corn and monitored with infrared-triggered cameras during pre-construction and capture periods. Unique pigs using trap sites were identified 5 days prior to trap construction and used in mark-recapture calculations to determine trap effectiveness. Three hundred fifty-six pigs were captured in spring of 2010 and 2011. I documented maximum captures of 27 and 15 pigs with drop-nets and corral traps, respectively. I removed 86 and 49% of the unique pigs from treatment units during the course of the study using drop-nets and corral traps, respectively. Catch per unit effort was 1.9 and 2.3 h/pig for drop-nets and corral traps, respectively. Wild pigs did not appear to exhibit trap shyness around drop-nets, which often facilitated the capture of entire sounders in a single drop. Use of drop-nets also eliminated capture of non-target species. During my study, damage by wild pigs was reduced by 90% across the study area, verifying control reduces damage on native rangelands. Population monitoring for pseudorabies virus, brucellosis, and porcine reproductive and respiratory syndrome resulted in exposure rates of 24, 0.4, and 0.4%, respectively. Removal of wild pigs reduced rooting damage and probability of encountering pig borne diseases of importance to livestock and human health. My research confirms drop-nets can be an effective tool for removal of wild pigs.

Page generated in 0.0517 seconds