• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 65
  • 32
  • Tagged with
  • 160
  • 123
  • 65
  • 65
  • 65
  • 56
  • 48
  • 30
  • 27
  • 22
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zur Druckdissoziation von Proteinkomplexen Lichtstreuung und thermodynamische Analyse am Beispiel von Arthropoden-Hämocyaninen und Kasein-Mizellen /

Gebhardt, Ronald. Unknown Date (has links)
Techn. Universiẗat, Diss., 2005--München.
2

Ein Messsystem zur Bestimmung von Partikeltemperaturen in Druckkohlenstaubflammen

Alfermann, Branko Abel. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2001--Aachen.
3

Einfluss von hydrostatischem Druck auf die Integrität des endothelialen Zellverbands / Physiological hydrostatic pressure affects endothelial monolayer integrity

Müller-Marschhausen, Katharina January 2009 (has links) (PDF)
Endothelzellen kleiden als einschichtiger Zellverband die Blutgefäße aus und bilden so eine Barriere zwischen Blut und Interstitium. Der Austausch von Flüssigkeit und Makromolekülen über diese Barriere wird durch die transzelluläre und parazelluläre Permeabilität reguliert. Die parazelluläre Permeabilität ist von der Integrität der interzellulären endothelialen Junktionen abhängig. Eine Schwächung der Adhäsion und Öffnung der Tight Junctions bedingt unweigerlich einen Anstieg der Permeabilität, die bei verschiedenen pathologischen Bedingungen, z.B. inflammatorischen Ödemen und allergischem Schock, lebensbedrohlich werden kann. Unter physiologischen Be-dingungen ist das Endothel verschiedenen mechanischen Stimuli wie Scherstress durch den Blutfluß, zyklischer Dehnung durch die Wandspannung und hydrostatischem Druck durch den Blutdruck ausgesetzt. Da die Effekte des hydrostatischen Drucks auf die Biologie der Endothelzelle weitgehend unverstanden sind, sollte in der vorliegenden Arbeit der Einfluss des physiologischen hydrostatischen Drucks auf die Integrität des endothelialen Zellverbands näher untersucht werden. Sowohl in mikrovaskulären Endothelzellen als auch in makro-vaskulären Endothelzellen wurde gefunden, dass hydrostatischer Druck von 5-15 cmH2O, wie er typischerweise in Blutkapillaren in vivo herrscht, einen protektiven Einfluss auf die Endothelbarriere gegenüber permeabilitätssteigernden Einflüssen vermittelt. Es konnte gezeigt werden, dass eine extrazelluläre Depletion von Ca2+ durch EGTA zu einem Verlust von VE-Cadherin aus den endothelialen Junktionen mit Lückenbildung zwischen den Zellen führt (dargestellt durch Immunfluoreszenz) und dass dieser Effekt durch die gleichzeitige Applikation eines hydrostatischen Drucks von 15 cmH2O weitgehend verhindert werden konnte. Auch die durch Cytochalasin D induzierte Actindepolymerisation und interzelluläre Lückenbildung sowie die Dissoziation der Zellkontakte und Zellablösung nach Zugabe des Ca2+/Calmodulin-Antagonisten Trifluperazin und die Thrombin-induzierte Zelldissoziation konnten durch gleichzeitige Druckexposition von 15 cmH2O inhibiert werden. Darüberhinaus konnte mit Hilfe der Laserpinzetten-Technik gezeigt werden, dass hydrostatischer Druck die Haftung von mit VE-Cadherin beschichteten Mikroperlen an der endothelialen Zelloberfläche sowohl in Abwesenheit von extrazellulärem Ca2+ als auch unter Einfluss von Cytochalasin D und Trifluperazin nahezu unvermindert ermöglichte, während ohne hydrostatischen Druck die Mikroperlen unter diesen Bedingungen (Ca2+-Depletion, Cytochalasin D, Trifluperazin) nicht mehr hafteten. Im weiteren Verlauf der Arbeit wurde untersucht, welche Mechanismen an den druckvermittelten Signalwegen beteiligt sein könnten. Es ist bekannt, dass cAMP und auch die Mitglieder der Rho-GTPasen-Familie Endothelbarriere-stabilisierende Funktionen haben. Es konnten jedoch keine signifikanten Veränderungen der cAMP-Konzentrationen sowie der Rho A- und Rac 1-Aktivität in makrovaskulären Endothelzellen unter hydrostatischem Druck von 15 cmH2O innerhalb von 45 Minuten nachgewiesen werden. Da Caveolin-1 in der Literatur eine Rolle in der Mechanotransduktion von zyklischer Dehnung und Scherstress zugesprochen wird, wurden im Labor generierte Endothelzellen aus Caveolin-1-defizienten Mäusen untersucht. Caveolin-1 stabilisiert plasmalemmale Invaginationen, die Caveolae, die eine Vielzahl an Molekülen mit signalgebenden und -weiterleitenden Funktionen beherbergen. In Caveolin-1-defizienten Endothelzellen war hydrostatischer Druck nicht in der Lage eine Destabilisierung des endothelialen Zellrasens durch Cytochalsin D, Trifluperazin und EGTA zu unterdrücken. Die Ergebnisse dieser Arbeit haben gezeigt, dass ein physiologischer hydrostatischer Druck zur Erhaltung der endothelialen Integrität und ihrer Barrierefunktion beiträgt und Caveolin-1-vermittelte Mechanismen bei der Mechanotransduktion des hydrostatischen Drucks eine Rolle spielen. / Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.
4

Modellversuch zur Rekonstruktion kraniomaxillofazialer Defekte mittels individueller 3D-pulverdruckgefertigter Calciumphosphatimplantate / Pilot project for reconstruction of craniomaxillofacial defects using individual 3D powder printing manufactured calcium phosphate implants

Rödiger, Jan January 2015 (has links) (PDF)
Ziel dieser Arbeit war die Etablierung einer Prozesskette zur Herstellung anatomischer PSI aus CaPC im 3D-Pulverdruck-Verfahren. Der Modellversuch sollte die klinische Anwendung des Verfahrens simulieren und gegenüber alternativen Verfahren einordnen. Weiterhin sollten wichtige Parameter der DCP erhoben werden, um deren Eignung als KEM für PSI darzulegen. Vier Defekte eines Kadaverschädels dienten der Prüfung der Prozesskette in Hinsicht auf Präzision und Praktikabilität des Verfahrens. Grundlage der Prozesskette waren dreidimensionale CT-Datensätze der Defektsituationen, welche eine computergestützte Rekonstruktion erlaubten. Eine eigens programmierte CAD-Software berechnete die virtuellen Entwürfe der individuellen Defektdeckungen anhand kontralateraler Strukturen. Abschließend wurden die PSI im 3D-Pulverdruck-Verfahren hergestellt und am Kadaverschädel bewertet. Zur Bewertung der DCP als geeignete KEM wurden mechanische, strukturelle und thermische Eigenschaften mit gängigen experimentellen Verfahren bestimmt. Die ermittelten Druck- und Biegefestigkeiten zeigten gute Ergebnisse für nicht bis gering lasttragende Bereiche, wie sie am Gesichts- und Hirnschädel vorliegen. Ebenso konnte die stabile Integration der Implantate durch osteosynthetische Fixierung im Schraubenausreißversuch nachgewiesen werden. Vorangegangene Untersuchungen zum klinischen Verhalten der Materialien konnten gute osteokonduktive Eigenschaften herausstellen und machen diese zu einer potentiellen Alternative zum autologen Transplantat. Die etablierte Prozesskette zeigte eine gute Praktikabilität und Wirtschaftlichkeit im Umgang mit DCPD / DCPA. Alle Modelldefekte konnten mit PSI rekonstruiert werden. Diese zeigten eine gute Passung in der Defektregion und eine gute äußere Kontur. Für eine tatsächliche klinische Anwendung 3D-pulvergedruckter CaPC-Implantate wird eine Validierung und schließlich Zertifizierung der gesamten Prozesskette einschließlich der Herstellung der Reaktanden erforderlich. Um das Verhalten der Implantate im menschlichen Organismus bewerten zu können, wäre zunächst der Einsatz als temporäres Implantat (z. B. als Platzhalter nach Unterkieferresektion vor definitiver autologer Rekonstruktion) als sinnvolle Erstanwendung denkbar. / The aim of this dissertation was to establish a process chain for the production of anatomical patient-specific implants of dicalcium phosphate in a 3D powder printing process. The pilot project was designed to evaluate the practicability and accuracy of this process chain. A human cadaver skull was dissected with several bone defects and then reconstructed according to its CT data using a self-programmed mirror-imaging software. The software was able to construct virtual implants which were processed with a 3D powder printer to obtain patient-specific implants. The success of the process chain was evaluated by the coverage of the skull defects in the model. Furthermore, dicalcium phosphates were tested for their suitability as an implant material regarding mechanical and thermal properties. The process chain turned out to be feasible. All defects were reconstructed with high precision and good anatomical contour. However, due to the low stability of the materials, the implants are only suitable for non-load-bearing defects.
5

Establishing and Improving Methods for Biofabrication / Etablierung und Verbesserung von Methoden für die Biofabrikation

Jüngst, Tomasz January 2019 (has links) (PDF)
Die Biofabrikation ist ein junges und sehr dynamisches Forschungsgebiet mit viel Potential. Dieses Potential spiegelt sich unter anderem in den ambitionierten Zielen wieder, die man sich hier gesetzt hat. Wissenschaftler in diesem Gebiet wollen eines Tages beispielsweise funktionale menschliche Gewebe nachbilden, die aus patienteneigenen Zellen bestehen. Diese Gewebe sollen entweder für die Testung neuer Arzneimittel und Therapien oder sogar als Implantate einsetzt werden. Der Schlüssel zum Erfolg soll hier die Verwendung automatisierter Prozesse in Verbindung mit innovativen Materialien sein, die es ermöglichen, die Hierarchie und Funktion des zu ersetzenden natürlichen Gewebes nachbilden. Obwohl in den letzten Jahren große Fortschritte gemacht worden sind, gibt es immer noch Hürden, die überwunden werden müssen. Ziel dieser Arbeit war es deshalb, die derzeit eingeschränkte Auswahl kompatibler Materialien für die Biofabrikation zu erweitern und bereits etablierte Verfahren wie den extrusionsbasierten Biodruck noch besser verstehen zu lernen. Auch neue Verfahren, wie etwa das Melt Electrospinning Writing (MEW) sollten etabliert werden. In Kapitel 3 dieser Arbeit wurde das MEW dazu verwendet, tubuläre Strukturen zu fertigen, die sich aus Polymerfasern mit einem durchschnittlichen Durchmesser von nur etwa 12 μm zusammensetzen. Die mit Hilfe von Druckluft in Verbindung mit einer hohen elektrischen Spannung aus einer Nadelspitze austretende Polymerschmelze wurde hierbei auf zylinderförmigen Kollektoren mit Durchmessern zwischen 0.5 und 4.8mm gesammelt. Auf diese Weise wurden röhrenförmige Faserkonstrukte generiert. Das Hauptaugenmerk lag auf dem Einfluss des Durchmessers, der Rotations- und Translationsbewegung des Kollektors auf die Morphologie der Faserkonstrukte. Hierzu wurden die Fasern erst auf unbewegten Kollektoren mit unterschiedlichen Durchmessern gesammelt und die entstehenden Muster analysiert. Es zeigte sich, dass das Fasermuster mit zunehmendem Durchmesser des Kollektors mehr den symmetrischen Konstrukten mit runder Grundfläche glich, die auch von flachen Kollektoren bekannt sind. Je kleiner der Kollektordurchmesser wurde, desto ovaler wurde die Grundfläche der Muster, was den Einfluss der Krümmung deutlich machte. In weiteren Experimenten wurden die zylindrischen Kollektoren mit Geschwindigkeiten von 4,2 bis 42 Umdrehungen pro Minute um ihre Längsachse gedreht. Die von flachen Kollektoren bekannten Übergänge der Fasermorphologie konnten auch für runde Kollektoren bestätigt werden. So änderte sich die Morphologie mit zunehmender Geschwindigkeit der Oberfläche von einer achterförmigen Gestalt über eine sinusförmige Ausrichtung der Fasern hin zu einer geraden Linie. Der Einfluss des Kollektordurchmessers wurde auch hier deutlich, da sich etwa die Amplitude der bei Rotationsgeschwindigkeiten im Bereich sinusförmiger Ausrichtung abgelegten Fasern mit abnehmendem Radius erhöhte. Im nächsten Schritt wurde neben der Rotation der Kollektoren auch eine Translation induziert. Durch geeignete Kombination von Rotation und Translation konnten Konstrukte mit definiertem Wickelwinkel hergestellt werden. Es zeigte sich, dass die Wiedergabe des vorher kalkulierten Winkels unter Verwendung von Oberflächengeschwindigkeiten, die nahe am Übergang zur geraden Faserausrichtung waren, am besten war. Im Rahmen dieser Arbeit konnten Winkel zwischen 5 und 60° mit hoher Präzision wiedergegeben werden. Im Falle von sich wiederholenden Mustern konnte auch in Bezug auf die Stapelbarkeit der Fasern aufeinander eine hohe Präzision erreicht werden. Kapitel 4 dieser Arbeit befasste sich mit dem extrusionsbasierten 3D-Druck. Das etabliere Verfahren wurde auf eine bisher wenig untersuchte Materialzusammensetzung von Nanopartikeln-beladenen Hydrogeltinten ausgeweitet. Die Tinte bestand aus einer Kombination von funktionalisierten Polyglyzidolen und einer unmodifizierten langkettingen Hyaluronsäure. Dieser wurden mesoporöse Silika-Nanopartikel mit unterschiedlicher Ladung zugesetzt und deren Freisetzung aus gedruckten Konstrukten mit einstellbarer Geometrien untersucht. Da die Hyaluronsäure selbst negativ geladen ist, wurde erwartet und auch gezeigt, dass aminofunktionalisierte Partikel mit positiver Ladung langsamer freigesetzt werden als carboxylfunktionalisierte Partikel mit negativer Ladung. Interessanterweise änderten die Partikel nicht die rheologischen Eigenschaften der Tinte und es konnten Hydrogele, die mit positiv geladenen Partikeln beladen waren, bei den gleichen Druckparametern verdruckt werden, wie Hydrogele, die mit negativ geladenen Partikeln beladen waren. Die guten Druckeigenschaften der Tinten ermöglichten die präzise Fertigung von Konstrukten mit einer Größe von 12x12x3mm^3, also von Konstrukten mit bis zu 16 aufeinanderfolgenden Lagen. Die Strangdurchmesser betrugen hierbei 627±31μm und die Verteilung der Partikel innerhalb der Stränge war sehr homogen. Zudem konnten auch Strukturen gedruckt werden, bei denen beide Tintenarten, mit positiven und mit negativen Partikeln beladene Hydrogele, in einem Konstrukt kombiniert wurden. Hierbei zeigte sich, dass die Freisetzung der Partikel, die über 6 Wochen hinweg untersucht wurde, auch stark von der Geometrie der zwei-Komponenten-Konstrukte abhing. Insbesondere die Auswirkung des direkten Kontakts zwischen den Komponenten innerhalb eines Konstruktes war hier sehr deutlich. Wurden die Stränge über Kreuz aufeinander abgelegt und hatten direkten Kontakt an den Kreuzungspunkten, konnte beobachtet werden, dass die positiv geladenen Partikel aus ihrem System in das mit den negativ geladenen Partikeln wanderten. Wurden die Stränge ohne direkten Kontakt parallel nebeneinander abgelegt, wurden die positiv geladenen Partikel in umgebendes Medium freigesetzt, konnten aber selbst nach 6 Wochen nicht in den Strängen mit den negativ geladenen Partikeln nachgewiesen werden. Dies verdeutlicht, dass Geometrie und Ladung der Partikel einen Einfluss auf die Freisetzung der Partikel hatten und sich die Freisetzung der Partikel durch eine geschickte Kombination beider Parameter steuern lässt. In Kapitel 5 dieser Arbeit wurde eine neue Materialklasse als Biotinte für den extrusionsbasierten Biodruck untersucht. Bei dem Material handelte es sich um Hydrogele auf Basis rekombinanter Spinnenseidenproteine. Diese konnten ab einer Proteinkonzentration von 3 %Gew./Vol. ohne die Verwendung von Verdickungsmittel oder anderen Additiven und auch ohne eine nachträgliche Vernetzung verdruckt werden. Sowohl Hydrogele auf Basis des rekombinanten Proteins eADF4(C16) als auch eine mit einer RGD-Sequenz versehene Modifikation (eADF4(C16)-RGD) konnten mit einer hohen Formtreue verdruckt werden. Die RGD-Sequenz zeigte einen positiven Effekt auf das Anhaften von humanen Fibroblasten, die auf gedruckte Konstrukte ausgesät wurden. Zudem konnten mit Hilfe der Hydrogele auch zellbeladene Konstrukte gefertigt werden. Hierzu wurden die Hydrogele mit einer Zellsuspension so vermengt, dass eine finale Konzentration von 1,2 Millionen Zellen/ml erreicht wurde. Die beladenen Gele wurden verdruckt und es konnte eine Überlebensrate von 70,1±7,6% nachgewiesen werden. Das in diesem Kapitel etablierte Materialsystem ermöglichte zum ersten Mal das Verdrucken lebender Zellen in einer neuen Klasse von Tinten, die weder die Beimengung von Verdickungsmittel noch einen zusätzlichen Nachhärtungsschritt für die Herstellung zellbeladener stabiler Konstrukte benötigt. / Biofabrication is an advancing new research field that might, one day, lead to complex products like tissue replacements or tissue analogues for drug testing. Although great progress was made during the last years, there are still major hurdles like new types of materials and advanced processing techniques. The main focus of this thesis was to help overcoming this hurdles by challenging and improving existing fabrication processes like extrusion-based bioprinting but also by developing new techniques. Furthermore, this thesis assisted in designing and processing materials from novel building blocks like recombinant spider silk proteins or inks loaded with charged nanoparticles. A novel 3D printing technique called Melt Electrospinning Writing (MEW) was used in Chapter 3 to create tubular constructs from thin polymer fibers (roughly 12 μm in diameter) by collecting the fibers onto rotating and translating cylinders. The main focus was put on the influence of the collector diameter and its rotation and translation on the morphology of the constructs generated by this approach. In a first step, the collector was not moving and the pattern generated by these settings was analyzed. It could be shown that the diameter of the stationary collectors had a big impact on the morphology of the constructs. The bigger the diameter of the mandrel (smallest collector diameters 0.5 mm, biggest 4.8 mm) got, the more the shape of the generated footprint converged into a circular one known from flat collectors. In a second set of experiments the mandrels were only rotated. Increasing the rotational velocity from 4.2 to 42.0 rpm transformed the morphology of the constructs from a figure-of-eight pattern to a sinusoidal and ultimately to a straight fiber morphology. It was possible to prove that the transformation of the pattern was comparable to what was known from increasing the speed using flat collectors and that at a critical speed, the so called critical translation speed, straight fibers would appear that were precisely stacking on top of each other. By combining rotation and translation of the mandrel, it was possible to print tubular constructs with defined winding angles. Using collections speeds close to the critical translation speed enabled higher control of fiber positioning and it was possible to generate precisely stacked constructs with winding angles between 5 and 60°. In Chapter 4 a different approach was followed. It was based on extrusion-based bioprinting in combination with a hydrogel ink system. The ink was loaded with nanoparticles and the nanoparticle release was analyzed. In other words, two systems, a printable polyglycidol/hyaluronic acid ink and mesoporous silica nanoparticles (MSN), were combined to analyze charge driven release mechanism that could be fine-tuned using bioprinting. Thorough rheological evaluations proved that the charged nanoparticles, both negatively charged MSN-COOH and positively charged MSN-NH2, did not alter the shear thinning properties of the ink that revealed a negative base charge due to hyaluronic acid as one of its main components. Furthermore, it could be shown that the particles did also not have a negative effect on the recovery properties of the material after exposure to high shear. During printing, the observations made via rheological testing were supported by the fact that all materials could be printed at the same settings of the bioprinter. Using theses inks, it was possible to make constructs as big as 12x12x3 mm3 composed of 16 layers. The fiber diameters produced were about 627±31 μm and two-component constructs could be realized utilizing the two hydrogel print heads of the printer to fabricate one hybrid construct. The particle distribution within those constructs was homogeneous, both from a microscopic and a macroscopic point of view. Particle release from printed constructs was tracked over 6 weeks and revealed that the print geometry had an influence on the particle release. Printed in a geometry with direct contact between the strands containing different MSN, the positively charged particles quickly migrated into the strand previously containing only negatively charged MSN-COOH. The MSN-COOH seemed to be rather released into the surrounding liquid and also after 6 weeks no MSN-COOH signal could be detected in the strand previously only containing MSN-NH2. In case of a geometry without direct contact between the strands, the migration of the positively charged nanoparticles into the MSN-COOH containing strand was strongly delayed. This proved that the architecture of the printed construct can be used to fine-tune the particle release from nanoparticle containing printable hydrogel ink systems. Chapter 5 discusses an approach using hydrogel inks based on recombinant spider silk proteins processed via extrusion-based bioprinting. The ink could be applied for printing at protein concentrations of 3 % w/v without the addition of thickeners or any post process crosslinking. Both, the recombinant protein eADF4(C16) and a modification introducing a RGD-sequence to the protein (eADF4(C16)-RGD), could be printed revealing a very good print fidelity. The RGD modification had positive effect on the adhesion of cells seeded onto printed constructs. Furthermore, human fibroblasts encapsulated in the ink at concentrations of 1.2 million cells per mL did not alter the print fidelity and did not interfere with the crosslinking mechanism of the ink. This enabled printing cell laden constructs with a cell survival rate of 70.1±7.6 %. Although the cell survival rate needs to be improved in further trials, the approach shown is one of the first leading towards the shift of the window of biofabrication because it is based on a new material that does not need potentially harmful post-process crosslinking and allows the direct encapsulation of cells staying viable throughout the print process.
6

Inactivation of human tumour cells by hydrostatic pressure /

Korn, Andreas. Unknown Date (has links)
Erlangen, Nürnberg, University, Diss., 2007. / Enth. 3 Sonderabdr. aus verschiedenen Zeitschr.
7

A model of the pressure dependence of the enantioselectivity of Candida rugosa lipase towards ( )-menthol Entwicklung eines Modells zur Druckabhängigkeit der Enantioselektivität der Candida rugosa Lipase gegenüber ( )-Menthol /

Kahlow, Ulrich. January 2002 (has links)
Stuttgart, Univ., Diss., 2002.
8

Computergestütztes Auffinden obliterierter Wurzelkanäle mit Hilfe der Planungssoftware SicatEndo und CDX – eine In-vitro-Vergleichsstudie / Computer based access cavity preparation in teeth with pulp canal obliteration by using the software sicat endo and cdx - a comparative in vitro study

Reich, Sebastian January 2021 (has links) (PDF)
Ziel der Untersuchung: Verglichen wurden die räumlichen Abweichungen der Bohrpfade nach virtueller Planung von Schablonen geführten Trepanationen mit Hilfe der Softwaresysteme SicatEndo (SE) und coDiagnostiX (CDX) und der benötigte Arbeitsaufwand. Material und Methode: Basierend auf µCT-Datensätzen von humanen obliterierten Frontzähnen wurden identische Kunststoffzähne und acht Zahnmodelle (4 Ober-, 4 Unterkiefer) hergestellt. Es wurde jeweils ein DVT und ein Oberflächenscan angefertigt. Diese Datensätze (DICOM; STL) wurden in die Softwaresysteme importiert und fusioniert. Anschließend wurden die Bohrpfade für je 16 Probenzähne pro Software geplant. Mit Hilfe der erstellten Schablonen wurden alle Trepanationen an den im Phantomkopf fixierten Modellen von einem Behandler durchgeführt. Nach Erschließung des apikalen Wurzelkanalanteils wurde ein DVT angefertigt und mit dem präoperativen DVT überlagert. Die räumliche drei-dimensionale (3D) Abweichung zwischen virtuell geplantem und tatsächlichem Bohrpfad wurde über die Vektorlänge bestimmt und der Arbeitsaufwand anhand der Planungszeit und der Anzahl der Mausklicks pro Kiefer erfasst. Ergebnisse: Für die Trepanationen mit SE zeigten sich signifikant geringe Abweichungen an der Bohrerspitze vestibulär-oral [CDX 0,54mm ± 0,32mm; SE 0,12mm ± 0,11mm; p < 0.05], 3D [CDX 0,74mm ± 0,26 mm; SE 0,35mm ± 0,17mm; p < 0.05] und hinsichtlich des Winkels [CDX 1,57° ± 0,76°; SE 0,68° ± 0,41°; p < 0.05] als mit CDX. Für CDX war der Planungsaufwand signifikant geringer als für SE hinsichtlich Planungszeit [CDX Ø 10min 50sec; SE Ø 20min 28sec] und hinsichtlich der Anzahl der Klicks pro Kiefer [CDX Ø 107; SE Ø 341]. Zusammenfassung: Beide Planungssysteme ermöglichen ausreichend präzise Schablonen geführte Bohrungen zur Erschließung apikaler Wurzelkanalanteile. / Aim: To compare the accuracy and effort of digital workflow for guided endodontic access procedures using two different software applications in 3D-printed teeth modeled to simulate pulp canal obliteration in vitro. Materials and methods: 32 3D-printed incisors with simulated PCO were fabricated and mounted, four each on maxillary and mandibular study arches. Cone beam computed tomography (CBCT) and 3D surface scans were matched and used to virtually plan and prepare GEA by one operator using two different methods: 1) coDiagnostiX (CDX) with 3D-printed templates, and 2) SicatEndo (SE) with subtractive CAD/CAM-manufactured templates. Postoperative CBCT and virtual planning data were superimposed for analysis. Accuracy was assessed by measuring the discrepancies between planned and prepared cavities at the tip of the bur (three spatial dimensions, 3D vector, angle). Virtual planning effort was defined as the time and number of computer clicks. A 95% confidence interval (CI) was computed for each sample . Results: SE successfully located root canals for GEA in 16/16 cases (100%) and CDX in 15/16 cases (94%). SE resulted in less mean deviation at the tip of the bur with regard to distance in the labial-oral direction (0.12 mm), 3D vector (0.35 mm), and angle (0.68 degrees) compared with CDX (0.54 mm, 0.74 mm, 1.57 degrees, respectively; P < 0.001). CDX required less mean planning time and effort for each four-tooth arch (10 min 50 s, 107 clicks) than SE (20 min 28 s, 341 clicks; P < 0.05). Conclusions: Both methods enabled rapid drill path planning, a predictable GEA procedure, and the reliable location of root canals in teeth with PCO without perforation.
9

Rapid-Prototyping hydraulisch härtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation / Rapid-prototyping of hydraulic calcium- and magnesium phosphate cements with local drug modification

Vorndran, Elke January 2011 (has links) (PDF)
Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abläuft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur Lösung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bezüglich der pulvertechnologischen Eigenschaften, wie Partikelgröße, Partikelgrößenverteilung, Glättungseigenschaften und Schüttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und für den Druckprozess optimiert. Die hohe Strukturgenauigkeit ermöglichte die Darstellung von makroporösen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gewünschten Phase Struvit wurden durch eine Nachhärtung in Ammoniumphosphatlösung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 % gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualität und der Ortsständigkeit gedruckter Wirkstoffe erwies sich eine zusätzliche Modifikation des Tricalciumphosphatpulvers mit quellfähigen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Auflösung von ca. 400 µm konnte für eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, während das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Auflösung von 480 µm aufwies. Die Ortsständigkeit eingebrachter Lösungen war Voraussetzung für die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abhängigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zusätzlicher polymerer Diffusionsbarrieren für den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verzögerten Freisetzung führte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix für den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivität nach dem Druckprozess zu über 80 % erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins führte. Diesem Problem könnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm möglich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gewünschten Phasen Bruschit und Struvit infolge des Nachhärtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosität der gedruckten Matrices der Phase Struvit von 58 % auf 26 % und der Phase Bruschit von 47 % auf 38 % ab. / Aim of this study was the room temperature fabrication of individually formed structures via 3D-powder printing based on hydraulic bone cements. In addition to the development of a novel cement formulation composed of magnesium phosphate, the simultaneous modification of matrices during the printing process with temperature sensitive and bioactive drugs was an important part of the work. The drug localization within the matrices is hereby correlated with an analogous colour design of the structures, which is physically reproduced by the multi-colour-printer. The calcium phosphate based system has the disadvantage of a strongly acidic setting reaction, which has negative effects on the simultaneous modification with sensitive bioactive agents. To solve this problem a novel bone cement formulation based on magnesium phosphate was established. This cement reacts with ammonium based binder solution within seconds to form the mineral struvite at neutral pH. The technological properties of the of trimagnesium phosphate cement powder, including particle size, particle size distribution, spreadability, powder density, and the setting behaviour, were characterized and optimized for the printing process. The high structural accuracy enabled the production of macroporous structures with a minimal pore diameter of approximately 200 µm. Proper mechanical characteristics of the printed structures as well as a high degree of conversion to the struvite phase were achieved by post-hardening in ammonium phosphate solution. The compressive strength could be increased to more than 20 MPa and the phase fraction of struvite could be increased to a maximum value of a total of 54 %. The fabrication of drug loaded calcium phosphate and magnesium phosphate scaffolds using a multi-colour-printer was established, beginning with the structure design and following the experimental verification of the correlation between the colour information and the applied binder. To guarantee a high accuracy of printing and the localization of the printed drugs, a supplemental modification of the tricalcium phosphate powder with swellable polymers (hydroxypropylmethylcellulose (HPMC) or chitosan) was successful. A maximum resolution of about 400 µm was achieved by an HPMC/chitosan/calcium phosphate composition, whereas the highly reactive magnesium phosphate/magnesium oxide system showed a resolution of about 480 µm. The localization of the applied solutions was a prerequisite to control the release kinetics of the drugs. The release kinetic of vancomycin was investigated in vitro depending on the drug localization (homogeneous, depot, gradient-like) within the matrix and by adding additional polymeric diffusion barriers. It could be shown that the polymeric modification of the matrices resulted in a delayed drug release. By discrete and depot-like or graded drug distributions within the matrices the release kinetic could be controlled, achieving a linear release with time (zero order release). The administered agents involved both low molecular compounds like the antibiotic vancomycin or the polysaccharide heparin and protein based factors like bone morphogenic factor rhBMP-2. Evaluation of pharmacological activity of the agents after printing as well as after release of vancomycin from a calcium phosphate matrix was determined, indicating that the bulk biological activity of more than 80 % was retained during the printing process. The limiting factor of the brushite based system was the strong acidic pH, which resulted in an inactivation of protein-based bioactives. This problem may be solved by using neutrally setting magnesium phosphate systems. Finally a microstructural characterization of calcium phosphate and magnesium phosphate matrices by µ-CT analysis and helium pycnometry as well as a quantitative phase analysis by Rietveld was performed. It was demonstrated, that 3D-printing allows the manufacturing of macro pores > 200 µm. The analysis of phase composition showed a significant increase of the degree of conversion from tricalcium phosphate or trimagnesium phosphate to the phases brushite or struvite due to the post hardening process. Hence the porosity of the printed matrices decreased from 58 % to 26 % for struvite and from 47 % to 38 % for brushite.
10

Thiol-ene Cross-linked Poly(glycidol) / Hyaluronic Acid Based Hydrogels for 3D Bioprinting / Thilo-En vernetzte Hydrogele basierend auf Poly(glyzidolen) und Hyaluronsäure für das 3D-Biodrucken

Schäfer [geb. Stichler], Simone January 2019 (has links) (PDF)
The aim of the work was the development of thiol-ene cross-linked hydrogels based on functionalized poly(glycidol)s (PG) and hyaluronic acid (HA) for extrusion based 3D bioprinting. Additionally, the functionalization of the synthesized PG with peptides and the suitability of these polymers for physically cross-linked gels were investigated, in a proof of principle study in order to demonstrate the versatile use of PG polymers in hydrogel development. First, the precursor polymers of the different hydrogel systems were synthesized. For thiol-ene cross-linked hydogels, linear allyl-functionalized PG (P(AGE-co-G)) and three different thiol-(SH-)functionalized polymers, ester-containing PG-SH (PG SHec), ester-free PG-SH (PG-SHef) and HA-SH were synthesized and analysed, The degree of functionalization of these polymers was adjustable. For physically cross-linked hydrogels, peptide-functionalized PG (P(peptide-co-G)), was synthesized through polymer analogue thiol-ene modification of P(AGE-co-G). Subsequently, thiol-ene cross-linked hydrogels were prepared with the synthesized thiol- and allyl-functionalized polymers. Depending on the origin of the used polymers, two different systems were obtained: on the one hand synthetic hydrogels consisting of PG-SHec/ef and P(AGE-co-G) and on the other hand hybrid gels, consisting of HA-SH and P(AGE-co-G). In synthetic gels, the degradability of the gels was determined by the applied PG-SH. The use of PG-SHec resulted in hydrolytically degradable hydrogels, whereas the cross-linking with PG-SHef resulted in non-degradable gels. The physical properties of these different hydrogel systems were determined by swelling, mechanical and diffusion studies and subsequently compared among each other. In swelling studies the differences of degradable and non-degradable synthetic hydrogels as well as the differences of synthetic compared to hybrid hydrogels were demonstrated. Next, the stiffness and the swelling ratios (SR) of the established hydrogel systems were examined in dependency of different parameters, such as incubation time, polymer concentration and UV irradiation. In general, these measurements revealed the same trends for synthetic and hybrid hydrogels: an increased polymer concentration as well as prolonged UV irradiation led to an increased network density. Moreover, it was demonstrated that the incorporation of additional non-bound HMW HA hampered the hydrogel cross-linking resulting in gels with decreased stiffness and increased SR. This effect was strongly dependent on the amount of additional HMW HA. The diffusion of different molecular weight fluorescein isothiocyanate-dextran (FITC-dextran) through hybrid hydrogels (with/without HMW HA) gave information about the mesh size of these gels. The smallest FITC-dextran (4 kDa) completely diffused through both hydrogel systems within the first week, whereas only 55 % of 40 kDa and 5-10 % HMW FITC-dextrans (500 kDa and 2 MDa) could diffuse through the networks. The applicability of synthetic and hybrid hydrogels for cartilage regeneration purpose was investigated through by biological examinations. It was proven that both gels support the survival of embedded human mesenchymal stromal cells (hMSCs) (21/28 d in vitro culture), however, the chondrogenic differentiation was significantly improved in hybrid hydrogels compared to synthetic gels. The addition of non-bound HMW HA resulted in a slightly less distinct chondrogenesis. Lastly the printability of the established hydrogel systems was examined. Therefore, the viscoelastic properties of the hydrogel solutions were adjusted by incorporation of non-bound HMW HA. Both systems could be successfully printed with high resolution and high shape fidelity. The introduction of the double printing approach with reinforcing PCL allowed printing of hydrogel solutions with lower viscosities. As a consequence, the amount of additional HMW HA necessary for printing could be reduced allowing successful printing of hybrid hydrogel solutions with embedded cells. It was demonstrated that the integrated cells survived the printing process with high viability measured after 21 d. Moreover, by this reinforcing technique, robust hydrogel-containing constructs were fabricated. In addition to thiol-ene cross-linked hydrogels, hydrogel cross-linking via ionic interactions was investigated with a hybrid hydrogel based on HMW HA and peptide-functionalized PG. Rheological measurements revealed an increase in the viscosity of a 2 wt.% HMW HA solution by the addition of peptide-functionalized PG. The increase in viscosity could be attributed to the ionic interactions between the positively charge PG and the negatively charge HMW HA. In conclusion, throughout this thesis thiol-ene chemistry and PG were introduced as promising cross-linking reaction and polymer precursor for the field of biofabrication. Furthermore, the differences of hybrid and synthetic hydrogels as well as chemically and physically cross-linked hydrogels were demonstrated. Moreover, the double printing approach was demonstrated to be a promising tool for the fabrication of robust hydrogel-containing constructs. It opens the possibility of printing hydrogels that were not printable yet, due to too low viscosities. / Ziel der Arbeit war die Entwicklung von Thiol-En-vernetzten Hydrogelen basierend auf funktionalisierten Poly(glyzidolen) (PG) und Hyaluronsäure (HA) für das extrusionsbasierte 3D-Biodrucken. Um die vielseitigen Anwendungsmöglichkeiten von PG-Polymeren für die Hydrogelentwicklung zu zeigen, wurde darüber hinaus, in einer Proof-of-Principle-Studie, PG mit Peptiden funktionalisiert und die Eignung dieser Polymere für die Herstellung von physikalisch vernetzten Gelen untersucht. Zunächst wurden die Vorläuferpolymere für die verschiedenen Hydrogelsysteme synthetisiert. Für die Thiol-En-vernetzten Hydrogele wurde lineares Allyl-funktionalisiertes PG (P(AGE-co-G)) und drei verschiedene Thiol-(SH )funktionalisierte Polymere, Ester haltiges PG-SH (PG-SHec), Ester freies PG SH (PG-SHef) und HA-SH synthetisiert und analysiert. Dabei war der Funktionalisierungsgrad dieser Polymere einstellbar. Für physikalisch vernetzte Hydrogele wurde Peptid-funktionalisierte PGs (P(Peptid co-G)) mittels polymeranaloger Thiol-En-Modifikation von P(AGE-co-G) synthetisiert. Anschließend wurden Thiol-En-vernetzte Hydrogele auf Basis der synthetisierten Thiol- und Allyl-funktionalisierten Polymeren hergestellt. Je nach Ursprung der verwendeten Polymere wurden zwei verschiedene Systeme erhalten: einerseits synthetische Hydrogele bestehend aus PG-SHec/ef und P(AGE-co-G) und andererseits hybride Gele, bestehend aus HA-SH und P(AGE-co-G). Bei den synthetischen Gelen wurde die Abbaubarkeit der Gele durch das verwendete PG-SH bestimmt. Die Verwendung von PG-SHec resultierte in hydrolytisch abbaubaren Hydrogelen, während die Vernetzung mit PG-SHef zu nicht abbaubaren Gelen führte. Die physikalischen Eigenschaften der verschiedenen Hydrogelsysteme wurden mittels Quell-, mechanischen und Diffusionsexperimenten bestimmt und anschließend miteinander verglichen. Die Quellungsstudien zeigten die Unterschiede von abbaubaren und nicht abbaubaren synthetischen Hydrogelen, sowie die Unterschiede von synthetischen gegenüber hybriden Hydrogelen. Als nächstes wurden die Steifigkeit und das Quellverhältnis (SR) der etablierten Hydrogelsysteme in Abhängigkeit von verschiedenen Parametern wie Inkubationszeit, Polymerkonzentration und UV-Bestrahlung untersucht. Im Allgemeinen zeigten diese Messungen für synthetische und hybride Hydrogele die gleichen Trends: eine erhöhte Polymerkonzentration sowie eine verlängerte UV-Bestrahlung führten zu einer erhöhten Netzwerkdichte. Darüber hinaus wurde gezeigt, dass das Einbringen zusätzlicher, nicht gebundener HMW HA die Hydrogelvernetzung behinderte, was zu Gelen mit verringerter Steifigkeit und erhöhtem SR führte. Dieser Effekt war stark abhängig von der Menge an zusätzlich eingebrachter HMW HA. Die Diffusion von Fluorescein-Isothiocyanat-Dextran (FITC-Dextran) mit unterschiedlichem Molekulargewichten durch hybride Hydrogele (mit/ohne HMW HA) lieferte Informationen über die Maschengröße dieser Gele. Das kleinste FITC-Dextran (4 kDa) diffundierte innerhalb der ersten Woche vollständig durch beide Hydrogelsysteme, während nur 55 % der 40 kDa und 5-10 % HMW FITC-Dextrane (500 kDa und 2 MDa) durch die Netzwerke diffundieren konnten. Die Anwendbarkeit von synthetischen und hybriden Hydrogelen für Knorpelregenerationszwecke wurde durch biologische Experimente untersucht. Es wurde bewiesen, dass beide Gele das Überleben von eingebetteten humanen mesenchymalen Stromazellen (hMSCs) unterstützen (21/28 d in vitro Kultur), jedoch war die chondrogene Differenzierung in hybriden Hydrogelen im Vergleich zu synthetischen Gelen signifikant verbessert. Die Zugabe von nicht gebundenem HMW HA führte zu einer etwas weniger ausgeprägten Chondrogenese. Zuletzt wurde die Druckbarkeit der etablierten Hydrogelsysteme untersucht. Dafür wurden die viskoelastischen Eigenschaften der Hydrogellösungen durch das Einbringen von nicht gebundener HMW HA eingestellt. Beide Systeme konnten erfolgreich mit hoher Auflösung und hoher Formgenauigkeit gedruckt werden. Die Einführung des Doppeldruck-Konzeptes mit verstärkendem PCL ermöglichte das Drucken von Hydrogellösungen mit niedrigeren Viskositäten. Infolgedessen konnte die für den Druck notwendige Menge an HMW HA reduziert und hybride Hydrogellösungen mit eingebetteten Zellen erfolgreich gedruckt werden. Es wurde gezeigt, dass die integrierten Zellen den Druckprozess mit hoher Vitalität überlebten (gemessen nach 21 d). Darüber hinaus wurden mit dieser Verstärkungstechnik robuste Hydrogel-enthaltende Konstrukte hergestellt. Zusätzlich zu den Thiol-En-vernetzten Hydrogelen wurde die Hydrogelvernetzung mittels elektrostatischen Wechselwirkungen mit einem hybriden Gel auf der Basis von HMW HA und Peptid-funktionalisiertem PG untersucht. Rheologische Messungen ergaben eine Erhöhung der Viskosität einer 2 wt.% HMW HA Lösungen durch die Zugabe von Peptid-funktionalisiertem PG. Der Viskositätsanstieg konnte auf die elektrostatischen Wechselwirkungen zwischen dem positiv geladenen PG und der negativ geladenen HMW HA zurückgeführt werden. Zusammenfassend wurde in dieser Arbeit die Thiol-En-Chemie und PG als vielversprechende Vernetzungsreaktion bzw. Polymervorstufe für die Biofabrikation eingeführt. Des Weiteren wurden die Unterschiede von hybriden und synthetischen Hydrogelen sowie von chemisch und physikalisch vernetzten Hydrogelen aufgezeigt. Darüber hinaus wurde gezeigt, dass das Doppeldruck-Konzept eine vielversprechende Methode für die Herstellung von robusten Hydrogel-enthaltenden Konstrukten ist. Es eröffnet die Möglichkeit, Hydrogele zu drucken, die aufgrund zu geringer Viskositäten bis jetzt nicht druckbar waren.

Page generated in 0.0516 seconds