• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 527
  • 446
  • 103
  • 86
  • 72
  • 36
  • 14
  • 10
  • 7
  • 7
  • 6
  • 6
  • 5
  • 2
  • 2
  • Tagged with
  • 1561
  • 201
  • 199
  • 123
  • 122
  • 109
  • 108
  • 92
  • 91
  • 84
  • 75
  • 72
  • 69
  • 67
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Effect of Cyclic Strain Path And Vibration Cycles on Shear Modulus And Damping of Sand

Cherian, Achu Catherine January 2016 (has links) (PDF)
The soil strata is often subjected to various kinds of vibrations such as that caused by earthquakes, water waves, traffic loads, wind power plants, construction related equipments, pile driving and vibratory machines. The strains induced in a soil mass due to the vibrations generated by these different sources often lie in a range of 0.0001% - 0.1%. The estimation of the shear modulus (G) and damping (D) of soils in this strain range becomes an important aspect for performing the analysis and design of various geotechnical structures subjected to different kinds of vibrations. Strain amplitude, effective confining stress, void ratio/relative density, number of vibration cycles and cyclic strain history are some of the key parameters that influence the modulus and damping characteristics of sands. Although, the effects of strain amplitude, confining pressure and relative density have been studied quite extensively in literature, only limited studies seem to have been reported in literature to examine the effects of the cyclic strain history and the vibration cycles on these dynamic properties. The objective of this thesis is to study the effects of the cyclic strain history and the number of vibration cycles on the shear modulus and damping ratio of dry sands in a strain range of 0.0001% to 0.1%. A number of resonant column tests have been performed on dry sand specimens to examine the effect of the cyclic shear strain history, by including both increasing and decreasing strain paths, on the shear modulus and damping ratio for different combinations of relative densities (Dr) and confining pressures (σ3); an increasing strain path intends to simulate a situation when a vibratory machine is just started before reaching a steady state of vibration, and on the other hand, the decreasing strain path matches a condition when the machine is shut down after running continuously in a steady state for some time. The specimen has been subjected to a series of cycles of increasing and decreasing shear strain paths approximately in a shear strain range of 0.0006% - 0.1%. For chosen values of relative density and confining pressure, two different series of tests beginning with either (i) an increasing strain path or (ii) a decreasing strain path, were performed. In addition, the influence of the numbers of the vibration cycles which are used to measure the resonant frequency of the specimen, referred to as the cycle constant, on the values of shear modulus has also been analyzed. Irrespective of the strain path adopted to commence the test or the cycle constant used to perform a resonant column test, for a given strain amplitude, the shear modulus along the increasing strain path has been found to be always greater than the corresponding modulus value along the decreasing strain path. For the series of tests which were commenced with the increasing strain path, the shear modulus corresponding to the first increasing strain path becomes always the highest as compared to the subsequent strain paths. For a given strain cycle, irrespective of relative density of sand, the difference between the values of G associated with the increasing and decreasing strain paths becomes always the maximum corresponding to a certain shear strain level. The maximum reduction in the shear modulus, due to the cyclic variation of the shear strain, was noted to be approximately one fourth of the maximum shear modulus (G0). This reduction in the shear modulus, on account of the cyclic variation of the shear strain, increases generally with decrease in the values of both relative density and confining pressure. The damping ratio for a given shear strain for the increasing strain path was noted to be lower than the corresponding value for the decreasing strain path except for the first increasing strain path. For a particular strain level, the series of tests started with the decreasing strain path resulted in a lower value of shear modulus for all the cyclic strain paths as compared to the tests which were commenced with the increasing strain path. The modulus reduction curve for the first increasing strain path was noted to be more or less the same irrespective of the value of the chosen cycle constant. For the subsequent strain paths, an increment in the cycle constant value caused a reduction in the shear modulus at a particular shear strain level. In order to match a situation when the machine is running continuously in a steady state of vibration, resonant column tests were conducted in a torsional mode by inducing a large number of the vibration cycles with the shear strain amplitude in a range of 0.0005%-0.05%. Corresponding to a given input voltage of the drive mechanism, the specimens were subjected to a number of vibration cycles ranging from 1,000 to 50,000. The values of shear modulus and damping ratio, before and after the application of vibration cycles, were determined for several input voltages ranging from 0.001 V (minimum) to 0.3 V (maximum). The tests were carried out for different combinations of relative densities and confining pressures. For the chosen relative densities, hardly any influence of vibration cycles on the values of G and D were noted for the strain amplitude below the threshold strain level (0.0024% - 0.0044%). Beyond the threshold strain level, an induction of the vibration cycles leads to a continuous increment in the shear strain which eventually causes (i) a decrease in the shear modulus, and (ii) an increase in the damping ratio. This effect was found to become especially more significant for lower values of relative densities as well as confining pressures. The percentage changes in the values of (i) shear strain, (ii) shear modulus, and (iii) damping ratios after the introduction of vibration cycles were noted to increase with an increment in the number of vibration cycles. However, for a given increment of the vibration cycles, the changes in the values of shear modulus and damping ratio were generally noted to subside with an increase in the number of the vibration cycles. At various strain levels, the magnitude of the shear modulus was observed to increase continuously with an increase in the values of both relative density and confining pressure. For the shear strain greater than the threshold strain (0.0024% - 0.0044%), a reduction in the damping ratio values was also noted with an increase in the magnitudes of the confining pressure. On the other hand, the influence of relative density on the damping ratio was found to be relatively negligible. The shear modulus reduction curves from the present tests' data were found to compare reasonably well with the empirical curves proposed in the literature, especially for low values of the confining pressure. A deviation of the present modulus reduction curves from the empirical curves was observed generally at large shearing strains. However, the damping values obtained from the present study were noted to be lower than the values predicted by the existing empirical correlations, particularly for low values of the confining pressure. An attempt has also been made to improve the accuracy of the measurement of the arrival times of both primary (P) waves and shear (S) waves while conducting bender/extender element tests. For this purpose, a series of laboratory tests were performed on dry sand at different frequencies, varying between 1 kHz and 10 kHz, for medium dense and very dense sands with different values of the confining pressures. While determining the times of arrival of both P and S waves, two corrections have been proposed to incorporate (i) the presence of an initial offset in the input signal, and (ii) the time lag due to an existence of peripheral electronics between the input and received signals when the source and receiver elements are kept in direct contact with each other. The absolute magnitude of the resultant of these two corrections was found to reduce with an increase in the frequency of the input signal. The determination of the P-wave arrival time does not pose much difficulty. It has been noted that it becomes equally accurate to measure the arrival times of the S-wave provided the proposed corrections are incorporated. The maximum shear modulus values measured from the resonant column tests and the bender element tests by incorporating these two corrections were found to compare reasonably well with each other. The thesis brings out the effects of the cyclic strain history and the vibration cycles on the shear modulus and damping ratio of dry sand. The results obtained are expected to be useful while doing the analysis and design of geotechnical structures subjected to different kinds of vibrations.
322

Uttorkning av betong i nyproduktion / Drying of concrete in new production

Persson, Herman, Zamfir, Alexandru January 2020 (has links)
Under de senaste åren har tillverkningsprocessen av betong genomgått en förändring föratt göra materialet och processer mer miljövänliga. Detta är en följd av att betong räknasvara ett av de viktigaste byggnadsmaterialen i världen. En viktig anledning till denomfattande användningen av betong är att betong som material är fuktbeständigt, att detinte möglar och att det är väldigt formbart.Förenta nationerna nämner 17 globala mål vars uppgift är att främja hållbarhet i framtidendär mål nio anger ”Bygga upp en motståndskraftig infrastruktur, verka för eninkluderande och hållbar industrialisering och främja innovation”. Detta faktum måstenaturligtvis tas hänsyn till även vid tillverkningen av betong och dess beståndsdelar.Syftet med det här examensarbetet är att med hjälp av ett stort antal mätpunkter visa påolika styrkor och svagheter inom tre olika typer av prognostiserande beräkningsverktygav torkningstider. Målet med arbetet är att jämföra statistik av praktiska mätningar,utfärdade av Conservator AB, med varandra och med de tre vanligasteberäkningsprogrammen som används för att beräkna uttorkningstider av betong.I de undersökta byggdelarna i arbetet gav TorkaS den högsta noggrannheten och sedanföljt väldigt nära av PPB. Utöver detta uppfyller de förväntningar som borde kunna ställaspå prognostisering av uttorkningstid för betong. Studien har också visat attuttorkningstiden för betong i nyproduktion påverkas mest av uttorkningsklimatet och tjockleken på avjämningsmassan. / In the recent years, the manufacturing of concrete has undergone a change to make theprocesses and the material more environmentally friendly. This is accompanied by thefact that concrete is one of the most important building materials in the world. This islargely because concrete as a material is moisture resistant, does not mold and is highlyformable.The United Nations mentions 17 global goals whose mission is to promote sustainabilityin the future whereas the ninth one states that “Build resilient infrastructure, promoteinclusive and sustainable industrialization and foster innovation”. This leads to the factthat it needs to take in consideration the manufacturing of concrete and its components.The purpose of this research is to show strengths and weaknesses in prediction tools forconcretes drying time by comparison with data from many measuring points. Besidesthat, the aim is to compare statistics of practical measurements, which were issued byConservator AB, with each other and with other three most commonly used programs inforecasting the drying time for concrete, i.e. TorkaS, BI-Dry and PPB.From the building sections that were researched, TorkaS gave the highest accuracy inforecasting the drying time and then followed very closely by PPB. In addition, BI-Drydid not meet the expected requirements on some of the building sections. Besides that, thestudy has shown that the drying time of concrete in new production is most influenced bythe drying climate and the thickness of the compound.
323

Production d'hydrogène à basse température par reformage à sec et reformage oxydant du méthane sur divers catalyseurs à base de nickel / Hydrogen production at low temperature by dry reforming and oxidative dry reforming of methane on various Ni-based catalysts

Wei, Yaqian 20 December 2017 (has links)
Afin de développer une économie basée sur l'hydrogène, il est souhaitable de pouvoir le produire à partir de biogaz (CH4 and CO2) ou de gaz à effet de serre (GES). Le reformage à sec (DRM) et le reformage oxydant du méthane (ODRM) sont des voies prometteuses pour produire H2 et CO à partir des GES et suscitent une grande attention en raison de préoccupations environnementales. Ces réactions ont été étudiées à basse température (600 -700 ° C) sur des oxydes mixtes CeNiX(AlZ)OY, NiXMg2AlOY, et des catalyseurs supportés Ni/SBA-15. Diverses techniques physico-chimiques ont été utilisées pour caractériser les catalyseurs, tels que DRX, XPS, TPR et Raman. L’influence de différents paramètres a été examinée, telles que la température de réaction, le prétraitement sous H2, la teneur en Ni, la masse de catalyseur et les concentrations en réactifs. En particulier, les réactions ont été étudiées à 600 °C, sans dilution des réactifs et sur 10 mg de catalyseur. Les meilleures activités catalytiques et sélectivités sont obtenues sur des catalyseurs partiellement réduits à température appropriée. L'addition d'O2 augmente la conversion du CH4 mais diminue la conversion du CO2, et O2/CH4 =0,3 apparaît comme la condition optimisée en raison de l'activité et de la sélectivité élevées et de la faible formation de carbone. Enfin, un site actif impliquant des espèces Ni en interaction forte avec d'autres cations est proposé. Il est obtenu sur un catalyseur partiellement réduit formé pendant le traitement in situ sous H2 ou sous flux de CH4, il implique des lacunes anioniques, des espèces O2- et des cations / In order to develop a sustainable hydrogen economy, it is desirable to produce hydrogen from biogas (CH4 and CO2) or greenhouses gases (GHG). Dry reforming (DRM) and oxidative dry reforming of methane (ODRM) are promising routes to produce H2 and CO from GHG and have received much attention due environment concerns. Herein, these reactions were studied at low temperatures (600 -700 °C) over CeNiX(AlZ)OY, NiXMg2AlOY mixed oxides and Ni/SBA-15 supported catalysts. Various physico-chemical techniques were employed to characterize the catalysts, such as XRD, XPS, H2-TPR and Raman. The influences of different parameters were examined, such as reaction temperature, pretreatment in H2, Ni content, mass of catalyst and reactants concentration, in particular, at 600°C in harsh conditions (feed gases without dilution) on low mass of catalyst (10 mg). The best catalytic activity and selectivity are obtained on partially reduced catalysts at appropriate temperature. The addition of O2 increases CH4 conversion but decreases CO2 conversion, and O2/CH4 = 0.3 could be the optimized condition due to high activity, selectivity and low carbon formation. Finally, an active site involving Ni species in close interactions with other cations is proposed. It is related to a partially reduced catalyst involving anionic vacancies, O2- species, and cations, which is formed during the in situ H2 treatment or CH4 flow
324

A Study of Contact Lens Comfort in Patients Wearing Comfilcon A Soft Contact Lenses Compared to Their Habitual Soft Contact Lenses

Hager, Michele LynnManeca 03 September 2009 (has links)
No description available.
325

Ex vivo and in vitro evaluation of the influence of the inhaler device and formulation on lung deposition of budesonide

Aloum, Fatima, Al Ayoub, Yuosef, Mohammad, Mohammad A., Obeed, Muthana, Paluch, Krzysztof J., Assi, Khaled H. 10 August 2020 (has links)
Yes / Two different types of dry powder inhalers (Easyhaler® and RS01®) were used in this work to evaluate the ex vivo and in vitro performance of a budesonide inhaled formulation with recrystallised mannitol, commercial DPI-grade mannitol, or lactose. The aerodynamic performance of the budesonide formulation with recrystallised mannitol was superior when RS01® was used (FPF = 45.8%) compared to Easyhaler® (FPF = 14%). However, the aerodynamic profile was very poor in both devices when commercial mannitol was used. Interestingly, the aerosol performance of the marketed budesonide formulation significantly improved when RS01® was used compared to Easyhaler® (the original device for the formulation). Due to the significant increases in the surface energy of the commercial mannitol formulation, the aerodynamic performance of the formulation was very poor. This work demonstrates the impact of inhaler devices on the performance of inhaled formulations and considers the particle surface energy during formulation development.
326

Dry beneficiation of fine coal using a fluidized dense medium bed / Andre Nardus Terblanche

Terblanche, Andre Nardus January 2013 (has links)
Beneficiation of fine coal (+500 μm –2000 μm) is a worldwide problem in the mining industry, especially dry beneficiation of fine coal. Coal beneficiation can be divided primarily into two methods, namely wet- and dry beneficiation. Wet beneficiation methods are utilized more in today‘s industry because of the sharp separation efficiency that can be achieved. These processes include wet jigging, dense medium cyclones, spiral beneficiation etc. Due to the lack of a sufficient water supply in some regions around the world including South Africa, dry beneficiation methods are becoming more popular. Recent mechanized mining methods caused the fraction of fines from coal mines to increase over the years. However, due to old inefficient technologies, coal fines contained in slurry ponds could not be beneficiated and had to be discarded. One new dry beneficiation technology that has been used and researched extensively is the fluidized dense medium bed (FDMB) technology. The purpose of this study is to determine whether fine coal can be successfully beneficiated with a FDMB. It also has to be determined whether adding magnetite and introducing a jigging (pulse) motion to the air feed will increase the separation efficiency of the fluidization process. Witbank seam 4 and a Waterberg coal was used in experiments during this study. A coarse (+1180 μm –2000 μm), fine (+500 μm –1180 μm) and a mix of the two samples were prepared and tested. It was found that adding magnetite to the feed of the fluidized bed did not increase the separation efficiency. However, previous studies indicated the opposite results with regards to magnetite addition. The difference in results obtained could be prescribed to the ultrafine nature of the magnetite and the small coal particles size range used. If the presence of fine particles in the bed increases, the stability of fluidization decreases. In turn, the separation efficiency of the process decreases. Subjecting the feed air flow to a pulsating motion did not have a significant effect on separation. Good results were still obtained with jigging experiments, although not better than with normal fluidization. Stratification of coal particles according to quality was evident by the results obtained during experiments. The quality of coal increases from the bottom to the top of the bed. Overall the fluidized bed, in the absence of magnetite, was found to be a sufficient de-ashing process and further research on this technology could be very beneficial to the coal industry. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
327

Dry beneficiation of fine coal using a fluidized dense medium bed / Andre Nardus Terblanche

Terblanche, Andre Nardus January 2013 (has links)
Beneficiation of fine coal (+500 μm –2000 μm) is a worldwide problem in the mining industry, especially dry beneficiation of fine coal. Coal beneficiation can be divided primarily into two methods, namely wet- and dry beneficiation. Wet beneficiation methods are utilized more in today‘s industry because of the sharp separation efficiency that can be achieved. These processes include wet jigging, dense medium cyclones, spiral beneficiation etc. Due to the lack of a sufficient water supply in some regions around the world including South Africa, dry beneficiation methods are becoming more popular. Recent mechanized mining methods caused the fraction of fines from coal mines to increase over the years. However, due to old inefficient technologies, coal fines contained in slurry ponds could not be beneficiated and had to be discarded. One new dry beneficiation technology that has been used and researched extensively is the fluidized dense medium bed (FDMB) technology. The purpose of this study is to determine whether fine coal can be successfully beneficiated with a FDMB. It also has to be determined whether adding magnetite and introducing a jigging (pulse) motion to the air feed will increase the separation efficiency of the fluidization process. Witbank seam 4 and a Waterberg coal was used in experiments during this study. A coarse (+1180 μm –2000 μm), fine (+500 μm –1180 μm) and a mix of the two samples were prepared and tested. It was found that adding magnetite to the feed of the fluidized bed did not increase the separation efficiency. However, previous studies indicated the opposite results with regards to magnetite addition. The difference in results obtained could be prescribed to the ultrafine nature of the magnetite and the small coal particles size range used. If the presence of fine particles in the bed increases, the stability of fluidization decreases. In turn, the separation efficiency of the process decreases. Subjecting the feed air flow to a pulsating motion did not have a significant effect on separation. Good results were still obtained with jigging experiments, although not better than with normal fluidization. Stratification of coal particles according to quality was evident by the results obtained during experiments. The quality of coal increases from the bottom to the top of the bed. Overall the fluidized bed, in the absence of magnetite, was found to be a sufficient de-ashing process and further research on this technology could be very beneficial to the coal industry. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
328

Utilization of dry distillers grains and charcoal as nitrogen fertilizer in corn

Shroyer, Kyle J. January 1900 (has links)
Master of Science / Department of Agronomy / Scott A. Staggenborg / With the increase in bio-energy production there is also an increase in by-products. Without proper disposal, these by-products might cause future economic and/or ecological problems. Land application has potential as a disposal and/or nutrient cycling method if these by-products have nutritive value for agricultural crops. The purpose of the study was to compare the use of two by-products of bio-energy production, dry distillers grains (ethanol) and charcoal(pyrolysis), as fertilizer with urea in corn (Zea mays L.). The experiment consisted of four location-years in Kansas. Treatments were dry distiller’s grains (DDG) no-till and tilled for four location-years and char no-till and tilled for three location-years. No-till urea was used as a baseline for comparison at all location-years. The Nitrogen rates ranged from 45 to 180 kg N ha-1. All source material was spring applied before tillage and planting. The corn yields for DDGs and urea were the almost the same across tillage treatments and locations. For DDG no-till, DDG tilled, and urea, the rates at which to achieve the same yields were 97, 111, 78 kg N ha-1, respectively. Corn yields for char at all rates and tillage treatments were the same as no fertilizer. The char, because of immobilization or lack of decomposition, did not contribute to the nitrogen needs of the corn. Neither material showed any inhibitory or otherwise negative effects on the corn in terms of grain yield compared with the control. But both DDGs and char had to have large amounts of material applied to achieve the same amount of nitrogen as urea. Land application of DDGs and char has potential merit for disposal/nitrogen cycling with DDGs being preferred for its nitrogen contribution.
329

Mätning av fuktnivåer i betonggolv / Measurement of moisture levels in concrete slabs

Metin, Dennis, Hashem, Dylan January 2016 (has links)
Examensarbetet redovisar försök utförda på betonggolv i syfte att studera betongens uttorkningsprocess. Testresultaten jämförs med beräkningar utförda i BI Dry och TorkaS. Betongen i testerna utsattes för fuktbelastning av olika grader och skeden. Detta skulle modellera att betong på byggen exponeras för väder och vind. Examensarbetet innehåller både litteraturstudier gällande betongensuttorkningsprocessen och tester. TorkaS 3.2, BI Dry 2.0 samt HumiGuards webbaserade beräkningsprogram användes för att beräkna uttorkningsprocessen och göra en analys av uppmätt data. / The thesis reports experiments performed on the dehydration process of moisture in concrete floor specimens. The aim is to study the RF-values in concrete exposed to humidity and for comparing actual measurements with calculation results from software. Investigation is made on the drying concrete affected by moisture at different levels and stages modelling for cases where concrete is usually exposed to weather conditions for fairly long periods before a controlled drying environment is achieved. The thesis was performed by using literature studies and tests. For each concrete slab specimen moisture controls were mounted sampling data which was implemented into the calculation program. TorkaS 3.2, BI Dry 2.0 and HumiGuard webbased calculation software was used for modelling the drying process and it is reported with graphs in the work.
330

Exploring snow information content of interferometric SAR Data / Exploration du contenu en information de l'interférométrie RSO lié à la neige

Gazkohani, Ali Esmaeily January 2008 (has links)
The objective of this research is to explore the information content of repeat-pass cross-track Interferometric SAR (InSAR) with regard to snow, in particular Snow Water Equivalent (SWE) and snow depth. The study is an outgrowth of earlier snow cover modeling and radar interferometry experiments at Schefferville, Quebec, Canada and elsewhere which has shown that for reasons of loss of coherence repeat-pass InSAR is not useful for the purpose of snow cover mapping, even when used in differential InSAR mode. Repeat-pass cross-track InSAR would overcome this problem. As at radar wavelengths dry snow is transparent, the main reflection is at the snow/ground interface. The high refractive index of ice creates a phase delay which is linearly related to the water equivalent of the snow pack. When wet, the snow surface is the main reflector, and this enables measurement of snow depth. Algorithms are elaborated accordingly. Field experiments were conducted at two sites and employ two different types of digital elevation models (DEM) produced by means of cross track InSAR. One was from the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), flown in February 2000. It was compared to the photogrammetrically produced Canadian Digital Elevation Model (CDEM) to examine snow-related effects at a site near Schefferville, where snow conditions are well known from half a century of snow and permafrost research. The second type of DEM was produced by means of airborne cross track InSAR (TOPSAR). Several missions were flown for this purpose in both summer and winter conditions during NASA's Cold Land Processes Experiment (CLPX) in Colorado, USA. Differences between these DEM's were compared to snow conditions that were well documented during the CLPX field campaigns. The results are not straightforward. As a result of automated correction routines employed in both SRTM and AIRSAR DEM extraction, the snow cover signal is contaminated. Fitting InSAR DEM's to known topography distorts the snow information, just as the snow cover distorts the topographic information. The analysis is therefore mostly qualitative, focusing on particular terrain situations. At Schefferville, where the SRTM was adjusted to known lake levels, the expected dry-snow signal is seen near such lakes. Mine pits and waste dumps not included in the CDEM are depicted and there is also a strong signal related to the spatial variations in SWE produced by wind redistribution of snow near lakes and on the alpine tundra. In Colorado, cross-sections across ploughed roads support the hypothesis that in dry snow the SWE is measurable by differential InSAR. They also support the hypothesis that snow depth may be measured when the snow cover is wet. Difference maps were also extracted for a 1 km2 Intensive Study Area (ISA) for which intensive ground truth was available. Initial comparison between estimated and observed snow properties yielded low correlations which improved after stratification of the data set.In conclusion, the study shows that snow-related signals are measurable. For operational applications satellite-borne cross-track InSAR would be necessary. The processing needs to be snow-specific with appropriate filtering routines to account for influences by terrain factors other than snow.

Page generated in 0.0288 seconds