• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 15
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 48
  • 27
  • 27
  • 26
  • 24
  • 19
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual Phase Precipitation Hardened Powder Metallurgy Stainless Steels

January 2011 (has links)
abstract: Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538oC in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile strength. Micropillar compression experiments of both as sintered and thermally aged material allowed for investigation of the effect of thermal aging. / Dissertation/Thesis / M.S. Materials Science and Engineering 2011
32

Synthesis and Stability of Ceramic-Carbonate Dual-Phase Membrane for Carbon Dioxide Separation

January 2013 (has links)
abstract: Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have limitations at high temperature resulting in poor permeation performance. To address these limitations, the use of a dense dual-phase membrane has been studied. These membranes are composed of conductive solid and conductive liquid phases that have the ability to selectively permeate CO2 by forming carbonate ions that diffuse through the membrane at high temperature. The driving force for transport through the membrane is a CO2 partial pressure gradient. The membrane provides a theoretically infinite selectivity. To address stability of the ceramic-carbonate dual-phase membrane for CO2 capture at high temperature, the ceramic phase of the membrane was studied and replaced with materials previously shown to be stable in harsh conditions. The permeation properties and stability of La0.6Sr0.4Co0.8Fe0.2O3-&delta; (LSCF)-carbonate, La0.85Ce0.1Ga0.3Fe0.65Al0.05O3-&delta; (LCGFA)-carbonate, and Ce0.8Sm0.2O1.9 (SDC)-carbonate membranes were examined under a wide range of experimental conditions at high temperature. LSCF-carbonate membranes were shown to be unstable without the presence of O2 due to reaction of CO2 with the ceramic phase. In the presence of O2, however, the membranes showed stable permeation behavior for more than one month at 900oC. LCGFA-carbonate membranes showed great chemical and permeation stability in the presence of various conditions including exposure to CH4 and H2, however, the permeation performance was quite low when compared to membranes in the literature. Finally, SDC-carbonate membranes showed great chemical and permeation stability both in a CO2:N2 environment for more than two weeks at 900oC as well as more than one month of exposure to simulated syngas conditions at 700oC. Ceramic phase chemical stability increased in the order of LSCF < LCGFA < SDC while permeation performance increased in the order of LCGFA < LSCF < SDC. / Dissertation/Thesis / Ph.D. Chemical Engineering 2013
33

Synthesis and Charaterization of Thin Ceramic-Carbonate Dual-Phase Membranes for Carbon Dioxide Separation

January 2014 (has links)
abstract: High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes. The membranes provide selective permeation to CO2 and exhibit high permeation flux at high temperature. Research on transport mechanism demonstrates that gas transport for ceramic-carbonate dual-phase membrane is rate limited by ion transport in ceramic support. Reducing membrane thickness proves effective to improve permeation flux. This dissertation reports strategy to prepare thin ceramic-carbonate dual-phase membranes to increase CO2 permeance. The work also presents characteristics and gas permeation properties of the membranes. Thin ceramic-carbonate dual-phase membrane was constructed with an asymmetric porous support consisting of a thin small-pore ionic conducting ceramic top-layer and a large pore base support. The base support must be carbonate non-wettable to ensure formation of supported dense, thin membrane. Macroporous yttria-stabilized zirconia (YSZ) layer was prepared on large pore Bi1.5Y0.3Sm0.2O3-&#948; (BYS) base support using suspension coating method. Thin YSZ-carbonate dual-phase membrane (d-YSZ/BYS) was prepared via direct infiltrating Li/Na/K carbonate mixtures into top YSZ layers. The thin membrane of 10 &#956;m thick offered a CO2 flux 5-10 times higher than the thick dual-phase membranes. Ce0.8Sm0.2O1.9 (SDC) exhibited highest CO2 flux and long-term stability and was chosen as ceramic support for membrane performance improvement. Porous SDC layers were co-pressed on base supports using SDC and BYS powder mixtures which provided better sintering comparability and carbonate non-wettability. Thin SDC-carbonate dual-phase membrane (d-SDC/SDC60BYS40) of 150 &#956;m thick was synthesized on SDC60BYS40. CO2 permeation flux for d-SDC/SDC60BYS40 exhibited increasing dependence on temperature and partial pressure gradient. The flux was higher than other SDC-based dual-phase membranes. Reducing membrane thickness proves effective to increase CO2 permeation flux for the dual-phase membrane. / Dissertation/Thesis / Ph.D. Chemical Engineering 2014
34

Influence Of Martensite Content On Fatigue Crack Growth Behaviour And Fracture Toughness Of A High Martensite Dual Phase Steel

Sudhakar, K V 05 1900 (has links) (PDF)
No description available.
35

Direct search for dark matter with the DarkSide experiment / Détection directe de matière sombre avec l'expérience DarkSide

Agnes, Paolo 30 September 2016 (has links)
L’Univers est principalement constitué d’un ensemble d’éléments non baryoniques et non lumineux appelé la matière noire. L’un des candidats actuellement favorisés est une particule massive interagissant faiblement avec la matière ordinaire (WIMP) issue du Big Bang. Le programme DarkSide vise à la détection directe de WIMPs à l’aide d’une chambre à projection temporelle utilisant de l’argon liquide en double phase. La première étape de l’expérience, DarkSide-50 ( (46 ± 0,7) kg de masse active) est en cours d’exécution. Une première campagne, avec un remplissage d’argon atmosphérique(AAr), a produit la meilleure limite sur la section efficace WIMP-nucleon jamais obtenue par une expérience à base d’argon. La deuxième phase, avec un remplissage d’argon souterrain (UAr, appauvri en Ar-39), représente une étape importante vers la construction de DarkSide-20k, une expérience à bas bruit de fond avec une masse fiducielle de 20 t. Ce travail est principalement consacré à la description de la simulation Monte Carlo de DarkSide (G4DS), et à ses applications. G4DS, basé sur GEANT4, fournit la description géométrique de chaque détecteur du programme DarkSide ; il a été calibré afin de reproduire la réponse de DarkSide-50 avec une précision de l’ordre de 1 % et intègre un modèle spécifiquement développé pour la description des mécanismes d’ionisation et de scintillation dans l’argon liquide, étalonné sur des données expérimentales. Les principales applications de la simulation comprennent l’estimation du bruit de fond dû aux neutrons et gammas pour DarkSide-50, la mesure du facteur d’appauvrissement de l’Ar-39 en UAr par rapport à l’AAr et les études de conception pour DarkSide-20k. / A wide range of observational evidence suggests that the matter content of the Universe is dominated by a non-baryonic and non-luminous component: dark matter. One of the most favored candidate for dark matter is a big-bang relic population of Weakly Interacting Massive Particles (WIMPs). The DarkSide program aims to the direct detection of WIMPs with a dual-phase liquid argon TPC and a background free exposure. The first phase of the experiment, DarkSide-50, is running since Oct 2013 and has (46 ± 0.7) kg active mass. A first run, with an atmospheric argon fill (AAr), provided the most sensitive limit ever obtained by an argon-based experiment. The current run, with an underground argon fill (UAr, depleted in Ar-39), represents a milestone towards the construction of DarkSide-20k, a low-background dual-phase TPC with a fiducial mass of 20 t. This work is been mainly devoted to the description of G4DS, the DarkSide Monte Carlo simulation, and to its applications. G4DS is a GEANT4-based simulation, it provides the geometry description of each detector of the DarkSide program, it is tuned to reproduce the DarkSide-50 response at the percent level and incorporates a custom model for ionization and scintillation mechanisms in liquid argon, tuned on real data. The principal applications of the simulation include the estimate of the neutron and gamma backgrounds for DarkSide-50, the measurement of the Ar-39 depletion factor in UAr with respect to AAr and the design studies for DarkSide-20k.
36

Effect of Grain Size on Mechanical Properties of Dual Phase Steel Composed of Ferrite and Martensite / フェライト+マルテンサイトDP鋼の変形挙動に及ぼす粒径の影響

Myeong-Heom, Park 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20367号 / 工博第4304号 / 新制||工||1667(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 田中 功, 教授 乾 晴行 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
37

Investigation of Structure-Property Relationships in Materials Using Ab-Initio and Semi-Empirical Methods

Liyanage, Laalitha S I 11 May 2013 (has links)
Structure-property relationships of two crystal structures were investigated using computational methodologies in two different length scales:electronic and atomistic length scales. Electronic structure calculations were performed using density functional theory (DFT) with generalized gradient approximation (GGA), GGA+U (U is “on-site” electronelectron repulsion) and hybrid functional forms. Atomistic calculations were performed utilizing the semi-empirical interatomic formulation, Modified Embedded Atom Method (MEAM). Classical molecular dynamics simulations were performed on the atomistic length scale in order to investigate thermal properties. In the first study, structural, elastic and thermal properties of cementite (Fe3C) were investigated using a Modified Embedded Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single element potentials were used to develop a Fe-C alloy MEAM potential, using a statistically-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe as well as heat of formation of Fe-C alloys in L12 and B1 structures. The stability of cementite at high temperatures was investigated by molecular dynamics simulations. The nine single crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of both the specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments. In the second study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite (SrFe12-x(Zn0.5Sn0.5)xO19 with x = 1) were investigated using firstprinciples total-energy calculations. We find that in the ground-state configuration Zn-Sn ions preferentially occupy 4f1 and 4f2 sites unlike the model previously suggested by Ghasemi et al. where Zn-Sn ions occupy 2b and 4f2 sites. Our model predicts a rapid increase in saturation magnetic moment (Ms) as well as decrease in magnetic anisotropy compared to the pure M-type Sr-hexaferrite, which is consistent with experimental observations.
38

Microstructure and Mechanical Properties of the Fusion and Heat-Affected Zones of a Laser Welded DP780 Steel

Smith, Heather January 2015 (has links)
Bead-on-plate laser welds were made on an industrially produced DP780 steel to determine the effect of normalized welding heat input on the microstructure and mechanical properties within the weld fusion zone (FZ) and heat affected zone (HAZ) with reference to the base material (BM) mechanical properties. Normalized welding heat input was calculated using an established model from the literature utilizing measurements from the weld cross-section microstructures along with known materials properties. Microhardness profiles and optical microscopy were employed to evaluate materials properties and microstructural changes across the various microstructural zones of each weld. The mechanical properties of the welds were evaluated globally through standard ASTM tensile specimens as well as through a series of specialized mechanical testing sample geometries which examined the properties of individual microstructural zones. These specialized sample geometries included non-standard uniaxial and plain strain tension where effective stress and effective strains were used to compare the mechanical properties across samples. It was determined that there was a good correlation between ASTM standard samples and the specialized sample geometries employed in this study and that the UTS and YS values obtained in both cases were comparable. Sigmoidal decay behaviour was observed in the UTS and YS with increasing heat input for both the FZ and HAZ of all welds. It was found that welds with heat inputs greater than 60 J/mm2 had both a UTS and YS which were significantly depressed in the FZ and HAZ when compared to the base material values. Conversely, welds with heat inputs below 36.3 J/mm2 were found to have a UTS and YS in both the FZ and HAZ microstructural zones which were above the values determined for the BM. When global weld properties were tested, it was found that welds with a heat input greater than 60.0 J/mm2 failed within the HAZ while welds with heat inputs below 36.3 J/mm2 failed within the BM. It has been shown that there is a significant correlation between the heat inputs of laser welded DP steels and both the mechanical properties and microstructural features of the various microstructural zones as well as the location of failure during weld tensile testing. It has also been demonstrated that the mechanical properties of weld microstructural zones can be qualitatively evaluated using specialized tensile testing geometries. / Thesis / Master of Applied Science (MASc)
39

Micro-Structural Response Of Dp 600 To High Strain Rate Deformation

Hamburg, Brian Fredrick 15 December 2007 (has links)
The object of this study was to investigate the micro-structural response of DP 600 subjected to high strain rate, ballistic impact tests. The ballistic tests were conducted using normal impact of a hardened steel penetrator into a 2 mm thick sheet of DP 600. The average strain rates produced from this test method are on the order of 10^5 s-1. Multiple methods were used to investigate the micro-structure before and after high strain rate deformation including optical microscopy, electron microscopy, and X-ray diffraction. A large variation in material response was observed between tests conducted at 0.8 x 10^5 and 2.5 x 10^5 s-1.
40

Functionalization of the SiO2 Microparticle Surface by Dual-phase ATRP in Flow Reactor

Yin, YuYao 04 June 2018 (has links)
No description available.

Page generated in 0.0398 seconds