• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 15
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 48
  • 27
  • 27
  • 26
  • 24
  • 19
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Dual-phase Inorganic Membrane for High Temperature Carbon Dioxide Separation

Chung, Seungjoon 06 October 2004 (has links)
No description available.
42

Heat-Affected Zone Softening Kinetics in Dual-Phase and Martensitic Steels

Biro, Elliot 04 1900 (has links)
<p>Advanced high strength steels, such as dual-phase and martensitic steels, are increasingly being used by automakers to decrease the thickness of steel sheet used in parts without sacrificing part strength. When welded, the martensite within the dual-phase and martensitic steel microstructures tempers, reducing the heat-affected zone (HAZ) hardness compared to the base material, locally reducing strength. This process is known as HAZ softening. HAZ softening has been well studied; however, the kinetics of this process has not been quantified and the processes responsible for HAZ softening have not been examined. This thesis investigated both of these topics.</p> <p>HAZ softening was modelled using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. As the thermal profile during welding is non-isothermal, the effects of temperature and time on steel tempering kinetics could not be separated by examining post-welded properties. The effects of tempering temperature and time were separated through a series rapid isothermal tempering experiments. Hardness data from these experiments allowed the HAZ softening rate to be empirically quantified through fitting the JMAK equation. This material model was then validated by predicting HAZ softening in laser and resistance spot welds. Although the fitted JMAK constants could be used to predict post-weld HAZ hardness, they did not agree with the classic literature values associated with martensite tempering.</p> <p>To understand why the JMAK coefficients did not match those of the classic martensite tempering literature, the softening data from one of the martensitic steels was re-examined. This study revealed that the softening process was a combination of two processes: carbide nucleation and carbide coarsening. The activation energies calculated for each process matched the classic literature values. Carbide coarsening dominated during tempering, which had a non-linear relation with change in hardness. The relationship between carbide coarsening and hardness was responsible for the softening kinetics measured from the rapid tempering experiments.</p> / Doctor of Philosophy (PhD)
43

Hardenability Improvements and Rate-Limiting Reactions During Hot-Dip Galvanizing of High-Mn Dual-Phase Steels

Meguerian, Richard J. 09 1900 (has links)
<p> Intercritically annealed steels, such as dual-phase steels, have found widespread use in automotive structural components due to their high strength and ductility. Elements such as Mn, Al and Si, added to improve the mechanical properties are selectively oxidized during heat treatment and limit the ability of the alloy to be reactively wet during continuous hot-dip galvanizing. Subsequently, a limit has been placed on the amount of alloy which can be used if the steel is to be subsequently galvanized. The specifics of this limit have not been explored in detail, nor has the mechanism of decreased wettability been well demonstrated in the literature other than to say that the galvanizing reaction is limited by oxides on the surface.</p> <p> Using a force balance, it is shown that the presence of MnO on the surface of steels greatly reduces the wettability with a typical galvanizing bath (Zn-0.2wt%Al, Fe-saturated, 460°C). Furthermore, it was determined that this is caused by the additional and rate-limiting step of aluminothermic reduction of the oxide layer with the bath Al, required for subsequent inhibition layer formation. By using a low pO2 during annealing, the wettability was improved by reducing the thickness of the MnO layer when compared to intermediate and industrially common values of pO2. Using a high pO2 also resulted in improved wettability since the internal oxide which was formed did not reduce the wettability since it was not exposed to the bath alloy.</p> <p> Improvements in hardenability were also explored via dilatometry showing that the formation of bainite is delayed with increasing Mn content, as well as a decrease in transformation temperatures from γ during cooling (i.e. Ms and Bs). At ~5wt% Mn, only the the transformation to αM could be observed. This opens the door to higher strength, galvanized steels - as well as possibly galvanized martensitic steels.</p> / Thesis / Master of Applied Science (MASc)
44

Triple-layer Tissue Prediction for Cutaneous Skin Burn Injury: Analytical Solution and Parametric Analysis

Oguntala, George A., Indramohan, V., Jeffery, S., Abd-Alhameed, Raed 08 May 2021 (has links)
Yes / This paper demonstrates a non-Fourier prediction methodology of triple-layer human skin tissue for determining skin burn injury with non-ideal properties of tissue, metabolism and blood perfusion. The dual-phase lag (DPL) bioheat model is employed and solved using joint integral transform (JIT) through Laplace and Fourier transforms methods. Parametric studies on the effects of skin tissue properties, initial temperature, blood perfusion rate and heat transfer parameters for the thermal response and exposure time of the layers of the skin tissue are carried out. The study demonstrates that the initial tissue temperature, the thermal conductivity of the epidermis and dermis, relaxation time, thermalisation time and convective heat transfer coefficient are critical parameters to examine skin burn injury threshold. The study also shows that thermal conductivity and the blood perfusion rate exhibits negligible effects on the burn injury threshold. The objective of the present study is to support the accurate quantification and assessment of skin burn injury for reliable experimentation, design and optimisation of thermal therapy delivery.
45

High and very high cycle fatigue behavior of DP600 dual-phase steel : correlation between temperature, strain rate, and deformation mechanisms / Comportement en fatigue à grand et très grand nombre de cycles du DP600 acier dual phase : corrélation entre la température, la vitesse de déformation, et les mécanismes de déformation

Torabiandehkordi, Noushin 22 June 2017 (has links)
Ce travail vise à améliorer notre compréhension du comportement en fatigue à grand et très grand nombre de cycles d’un acier ferrito-martensitique dual phase, notamment les effets de la température et de la vitesse de déformation résultant de chargements cycliques à haute fréquence. L'effet de la fréquence sur la réponse en fatigue de l'acier DP600 a été étudié en effectuant des essais de fatigue sur une machine ultrasonique travaillant à 20 kHz et sur une machine conventionnelle travaillant à des fréquences inférieures à 100 Hz. Des études de fractographie et des observations microscopiques à la surface des échantillons ont été effectuées pour étudier les mécanismes de déformation et de rupture. De plus, la thermographie infrarouge in situ a été utilisée pour étudier la réponse thermique et les mécanismes dissipatifs du matériau lors des essais de fatigue. Les courbes S-N ont été déterminées à partir de chargements de fatigue ultrasoniques à 20 kHz et d’essais conventionnels à 30 Hz. La durée de vie pour une amplitude de contrainte donnée est plus élevée dans le cas de la fatigue ultrasonique bien que la limite de fatigue soit identique dans les deux cas. L’augmentation inévitable de la température en fatigue ultrasonique à fortes amplitudes de contraintes, ainsi que le comportement dépendant de la vitesse de déformation de la ferrite, en tant que structure CC, ont été trouvés comme les paramètres clés expliquant le comportement observé en fatigue, et la réponse thermique sous les fréquences faibles et ultrasoniques. Les écarts observés entre l’essai de fatigue conventionnel et celui ultrasonique ont été évalués à travers les mécanismes de mobilité des dislocations vis dans la phase ferritique de structure cubique centrée (CC). La durée de vie plus élevée et l’amorçage de la fissure principale sur une inclusion observés en fatigue ultrasonique ont été attribués au vieillissement dynamique résultant du fort auto-échauffement du matériau aux fortes amplitudes de contraintes. L'existence d'une transition du régime thermiquement activé au régime athermique avec l’augmentation de l'amplitude de contrainte a été mise en évidence. Au-dessous de la limite de fatigue, la déformation a lieu dans un régime thermiquement activé alors qu'elle est dans un régime athermique au-dessus de la limite de fatigue. En fatigue conventionnelle, la déformation est athermique pour toutes les amplitudes de contrainte. Une carte de transition a été produite en utilisant les résultats expérimentaux pour l'acier DP600 ainsi que les données disponibles dans la littérature pour d'autres aciers à base de ferrite, montrant ainsi la corrélation entre le mouvement des dislocations vis thermiquement activé et l'absence de rupture en fatigue à très grand nombre de cycle. / This work is an attempt towards a better understanding of the high cycle and very high cycle fatigue behaviors of a ferritic-martensitic dual-phase steel, with a regard to temperature and strain rate effects, resulting from accelerated fatigue loading frequencies. The influence of frequency on fatigue response of DP600 steel was investigated by conducting ultrasonic and conventional low frequency fatigue tests. Fractography studies and microscopic observations on the surface of specimens were carried out to study the deformation and fracture mechanisms under low and ultrasonic frequencies. Moreover, in situ infrared thermography was carried out to investigate the thermal response and dissipative mechanisms of the material under fatigue tests. The S-N curves were determined from ultrasonic 20-kHz fatigue loadings and conventional tests at 30 Hz. Fatigue life for a given stress amplitude was found to be higher in the case of ultrasonic fatigue whereas the fatigue limit was the same for both cases. Moreover, crack initiation was always inclusion-induced under ultrasonic loading while under conventional tests it occurred at slip bands or defects on the surface. The inevitable temperature increase under ultrasonic fatigue at high stress amplitudes along with the rate dependent deformation behavior of ferrite, as a body centered cubic (BCC) structure, were found as the key parameters explaining the observed fatigue behavior and thermal response under low and ultrasonic frequencies. The discrepancies observed between conventional and ultrasonic fatigue tests were assessed through the mechanisms of screw dislocation mobility in the ferrite phase as a BCC structure. The higher fatigue life and inclusion-induced crack initiations in the case of ultrasonic loading were attributed to the dynamic strain aging, which resulted from the high temperature increases at high stress amplitudes. The existence of a transition in deformation regime from thermally-activated to athermal regime under ultrasonic fatigue loading by increasing the stress amplitude was confirmed. Below the fatigue limit, deformation occurred in thermally-activated regime while it was in athermal regime above the fatigue limit. Under conventional loading deformation occurred in athermal regime for all stress amplitudes. From the analysis of the experimental data gathered in this work, guidelines were given regarding the comparison and interpretation of S-N curves obtained from conventional and ultrasonic fatigue testing. A transition map was produced using the experimental results for DP600 steel as well as data available in the literature for other ferrite based steels, showing the correlation between thermally-activated screw dislocation movement and the absence of failure in very high cycle fatigue.
46

Micro-deformation and texture in engineering materials

Kiwanuka, Robert January 2013 (has links)
This DPhil project is set in the context of single crystal elasticity-plasticity finite element modelling. Its core objective was to develop and implement a methodology for predicting the evolution of texture in single and dual-phase material systems. This core objective has been successfully achieved. Modelling texture evolution entails essentially modelling large deformations (as accurately as possible) and taking account of the deformation mechanisms that cause texture to change. The most important deformation mechanisms are slip and twinning. Slip has been modelled in this project and care has been taken to explore conditions where it is the dominant deformation mechanism for the materials studied. Modelling slip demands that one also models dislocations since slip is assumed to occur by the movement of dislocations. In this project a model for geometrically necessary dislocations has been developed and validated against experimental measurements. A texture homogenisation technique which relies on interpretation of EBSD data in order to allocate orientation frequencies based on representative area fractions has been developed. This has been coupled with a polycrystal plasticity RVE framework allowing for arbitrarily sized RVEs and corresponding allocation of crystallographic orientation. This has enabled input of experimentally measured initial textures into the CPFE model allowing for comparison of predictions against measured post-deformation textures, with good agreement obtained. The effect of texture on polycrystal physical properties has also been studied. It has been confirmed that texture indeed has a significant role in determining the average physical properties of a polycrystal. The thesis contributes to the following areas of micro-mechanics materials research: (i) 3D small deformation crystal plasticity finite element (CPFE) modelling, (ii) geometrically necessary dislocation modelling, (iii) 3D large deformation CPFE modelling, (iv) texture homogenisation methods, (v) single and dual phase texture evolution modelling, (vi) prediction of polycrystal physical properties, (vii) systematic calibration of the power law for slip based on experimental data, and (viii) texture analysis software development (pole figures and Kearns factors).
47

Fracture prediction of stretched shear cut edges in sheets made of Dual-Phase steel

Falk, Johannes January 2017 (has links)
Dual-Phase (DP) steels, part of the group of Advanced High Strength Steels (AHSS), are used by car manufactures due to its large strength to weight ratio. The high strength of the DP steel does have a negative impact on the formability during sheet metal forming and stretch forming, e.g. fractures often appear in shear cut edges during forming of blanks made of DP steel.   The main objective with this thesis is to develop a new punch for Volvo Cars that concentrates the strain to the sheared edges of a test specimen made from different types of DP steel. This is done to be able to measure and obtain maximum fracture strain during stretch forming tests in a press. The newly developed test method is called CTEST (Concentrated Trim Edge Strain Test).   The tests are performed with DP steel specimens with three different qualities of the shear cut edges; fine cut, medium cut and worn cut. DP steels tested are DP600GI, DP600UC and DP800GI from three different suppliers. 10 different types of DP steels are tested in this study with different thickness. Thickness of specimens tested are 1 mm, 1.1 mm, 1.5 mm and 2 mm and all specimens tested have a lengthwise (RD) rolling direction.   The quality of the sheared cut edge has a great impact to the formability and maximum fracture strain of the specimen. A specimen with a fine cut endures higher fracture strain than medium cut and a worn cut for all types of DP steel with different thickness. A 1 mm thick specimen endures a lower fracture strain than 1.5 mm and 2 mm specimen for all cut qualities.   Further, the impact of the orientation of the burr zone of a shear cut edge is studied. With the burr zone facing upwards from the CTEST punch the formability of the specimens is decreased compared to a burr zone facing downwards, especially for a worn cut specimen with micro cracks and imperfections in the edge surface.   ARAMIS Digital Image Correlation (DIC) system is used to analyze the specimen edges during press experiments. The ARAMIS results unveil that several small fractures appear in the sheared edges of a specimen just before the specimens split into two pieces. This phenomenon was seen for specimen with worn and medium shear cut qualities.   Finite Element (FE) simulations of the CTEST is performed in AutoForm to determine maximum values of the true strain for the three different cut qualities. The simulation in AutoForm does show a slightly higher value of the force and press depth than the value from the press test before maximum fracture strain in reached. The small fractures seen in ARAMIS just before the specimen split into two pieces cannot be seen in the simulation in AutoForm.
48

Fiber Laser Welding of Advanced High Strength Steels

Westerbaan, Daniel January 2013 (has links)
Fiber laser welding (FLW) was used to join advanced high strength steel (AHSS) and high strength steel (HSS); specifically two dual-phase (DP) steels, with ultimate tensile strengths above 980 MPa and with different chemistries (DP980 Rich and DP980 Lean), and a high strength low alloy (HSLA) steel, with an ultimate tensile strength of 450MPa (HSLA450). The welding speed and power were varied to develop a process envelope for minimizing weld concavity. In order to attain welds free of weld concavity a balance of speed and power was required; weld concavity could be reduced by lowering power and increasing speed. Welds with amounts of concavity ranging from 15 % to 35 % were characterized with respect to hardness, tensile and fatigue testing. Tensile results revealed that DP steel was sensitive to weld concavity while HSLA450 was not. At stress amplitudes enduring beyond 1000 cycles, welded specimens exhibited lower fatigue resistance compared to the base metal. Concavity reduced the fatigue life of DP980 steels, where increasing the amount of concavity further reduced the fatigue resistance, while the fatigue resistance of HSLA steel welds was not sensitive to weld concavity. Hardness profiling of the welds revealed that HAZ softening was present in the DP980 steel welds. The amount of HAZ softening was normalized; allowing for comparison of different steels. Welds made by FLW demonstrated reduced softening compared other laser welding types because FLW was capable of welding with lower heat input. A difference in the FZ hardness was observed between the DP980 steels because of the difference in carbon content of the steels; where higher carbon content resulted in higher FZ hardness. Additionally the high cooling rate in FLW created higher fusion zone hardness than the values predicted by Yurioka’s model based on arc welding. Examination of the microstructure revealed that the soft zone of DP980 Lean steel possessed severely tempered martensite and untransformed ferrite while DP980 Rich generated a structure with a mixture of tempered martensite, untransformed ferrite and a small fraction of non-tempered martensite. This difference in HAZ softening was attributed to the alloying content of the DP980 Rich steel the higher alloying content of DP980 Rich steel formed a stable austenite that could exist near the Ac1 temperature and enabled the formation of new martensite in the soft zone. The effects of HAZ softening were apparent in tensile testing where the DP980 Lean steel, which exhibited higher softening, demonstrated by a severe reduction in elongation while the DP980 Rich steel, which had higher resistance to softening, attained elongation comparable to its base metal. HSLA450 exhibited a slight reduction in elongation due to the hardening of the fusion zone. The welded DP980 Rich and HSLA450 steels consistently failed within the base metal, while the DP980 Lean steel failed in the soft zone. The welded DP980 Rich steel also demonstrated limiting dome heights comparable to the base metal while the severe softening in the DP980 Lean led to premature fracture in the soft zone, yielding a larger reduction in the limiting dome height.
49

Growth Kinetics of the Fe-Al Inhibition Layer in Hot-dip Galvanizing of Interstitial-free and Dual-phase Steels

Hsu, Chiung-wen 08 August 2011 (has links)
This study is mainly aimed at interstital-free and dual-phase steels, analyzing the compositions and distribution of selective surface oxides after annealing and then to know the influence of these oxidation for the formation of FeAl inhibition layer in hot-dip galvanizing. Interstital-free and dual-phase steels were first annealed at 800 oC for 1-200 s in a 10% H2-N2 protected atmosphere of -70 oC and 0 oC dew point respectively and then dipped in zinc bath with Al content 0.12-0.18 wt% for 0-20 s. Using this combined SEM, Auger electron spectroscopy(AES), X-ray photoelectron spectroscopy(XPS) and ICP-AES etc. instruments, it is shown that the MnAl2O4 spinels were the major oxidation on the surface of IF steel after annealing. The average oxidation thickness was about 5-15 nm. Annealing times has little effect on the thickness. On the other hand, MnO were observed on DP steel surface after anneaing. The MnO paticles mainly distributed at the grain boundaries ,and the average oxdaiton thickness increase rapidly from 20 nm(10 s) to 110 nm(200 s) with annealing times. The growth of the FeAl inhibition layer can separate to nucleation in initial stage and diffusion growth later. The Fe2Al5 nucleation times were all about 0.1 s in both steels , and average thicknesses were approximately 20 nm. For IF steels , Al uptake in the zinc bath and steel interface was depleted in nucleation stage with 0.12 wt% Al content, so that delayed the growth of Fe2Al5, and the rate determining step was the diffusion of Al in zinc bath. When Al content raise up to 0.14 wt%, the phenomenon of growth delay was not happened, and the rate determining step of Fe2Al5 growth changed to the solid-state diffusion of Fe in Fe2Al5. For DP steels, when Al content up to 0.14 wt%, the growth mechanism was similar to IF steels, but the rate determining step of Fe2Al5 growth was mainly in the grain boundary diffusion of Fe in Fe2Al5. Moreover, where the MnO paticles was rich could obviously observe the delay of Fe2Al5 growth. It was probably because of consuming a great deal of Al to reduce the MnO oxides.
50

Fiber Laser Welding of Advanced High Strength Steels

Westerbaan, Daniel January 2013 (has links)
Fiber laser welding (FLW) was used to join advanced high strength steel (AHSS) and high strength steel (HSS); specifically two dual-phase (DP) steels, with ultimate tensile strengths above 980 MPa and with different chemistries (DP980 Rich and DP980 Lean), and a high strength low alloy (HSLA) steel, with an ultimate tensile strength of 450MPa (HSLA450). The welding speed and power were varied to develop a process envelope for minimizing weld concavity. In order to attain welds free of weld concavity a balance of speed and power was required; weld concavity could be reduced by lowering power and increasing speed. Welds with amounts of concavity ranging from 15 % to 35 % were characterized with respect to hardness, tensile and fatigue testing. Tensile results revealed that DP steel was sensitive to weld concavity while HSLA450 was not. At stress amplitudes enduring beyond 1000 cycles, welded specimens exhibited lower fatigue resistance compared to the base metal. Concavity reduced the fatigue life of DP980 steels, where increasing the amount of concavity further reduced the fatigue resistance, while the fatigue resistance of HSLA steel welds was not sensitive to weld concavity. Hardness profiling of the welds revealed that HAZ softening was present in the DP980 steel welds. The amount of HAZ softening was normalized; allowing for comparison of different steels. Welds made by FLW demonstrated reduced softening compared other laser welding types because FLW was capable of welding with lower heat input. A difference in the FZ hardness was observed between the DP980 steels because of the difference in carbon content of the steels; where higher carbon content resulted in higher FZ hardness. Additionally the high cooling rate in FLW created higher fusion zone hardness than the values predicted by Yurioka’s model based on arc welding. Examination of the microstructure revealed that the soft zone of DP980 Lean steel possessed severely tempered martensite and untransformed ferrite while DP980 Rich generated a structure with a mixture of tempered martensite, untransformed ferrite and a small fraction of non-tempered martensite. This difference in HAZ softening was attributed to the alloying content of the DP980 Rich steel the higher alloying content of DP980 Rich steel formed a stable austenite that could exist near the Ac1 temperature and enabled the formation of new martensite in the soft zone. The effects of HAZ softening were apparent in tensile testing where the DP980 Lean steel, which exhibited higher softening, demonstrated by a severe reduction in elongation while the DP980 Rich steel, which had higher resistance to softening, attained elongation comparable to its base metal. HSLA450 exhibited a slight reduction in elongation due to the hardening of the fusion zone. The welded DP980 Rich and HSLA450 steels consistently failed within the base metal, while the DP980 Lean steel failed in the soft zone. The welded DP980 Rich steel also demonstrated limiting dome heights comparable to the base metal while the severe softening in the DP980 Lean led to premature fracture in the soft zone, yielding a larger reduction in the limiting dome height.

Page generated in 0.0449 seconds