• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of microstructure development in silicon-containing bainitic free-machining steels

Guo, Lei January 2017 (has links)
This research aims to model the microstructure development of Si-containing bainitic free-machining steel, including allotriomorphic ferrite, idiomorphic ferrite, pearlite, Widmanstatten ferrite, bainite and martensite. The effect of recalescence has been included to give a better estimation of the cooling curve under natural cooling conditions. A model for estimating retained austenite size distribution in the carbide-free bainitic microstructure has been developed. Manganese sulphide particles are used in the free-machining steel to break chips during machining; its effect on the prior austenite grain size has been investigated, taking account of the sulphide shape. The theories of all the major solid state phase transformations involved in steel are reviewed in chapter 2. The theory of the simultaneous transformation model is presented in chapter 3.uu A recalescence model dealing with the heat of reaction has been developed in chapter 5 for bar-shaped products. The model is based on the integration of a heat transfer model, considering latent heat generation, into the simultaneous transformation framework. It has been found that latent heat can greatly affect the transformation, especially in the case of pearlite and Widmanstatten ferrite. Chapter 6 presents the model for estimating the size distribution of retained austenite regions. The model builds on the random division of an austenite grain by bainite sheaves, which means the sizes of the two new compartments generated by the division of an austenite grain by a bainite sheaf are allocated randomly. The next compartment to be divided is also chosen at random. Good agreement between prediction and experiment has been achieved for high carbon carbide-free bainitic microstructures. The transition temperature from upper to lower bainite is modelled in chapter 7. The model compares the time required for decarburising a supersaturated bainitic ferrite platelet and that for cementite precipitation within the ferrite platelet. Manganese, silicon and chromium are considered in the model. It is suggested that carbon and manganese favour lower bainite, whereas silicon promotes upper bainite. The effect of manganese sulphide particles on austenite grain boundary motion has been studied in chapter 8. These rod-shaped particles span many austenite grains; the result shows that the long rod-shaped particles are more effective in pinning the austenite grain boundary than spheres of the same volume, or even strings of identical spheres with the same total volume. Experimental work is presented in chapters 9 and 10. In situ synchrotron X-ray study of the bainite transformation reveals that the distribution of carbon in the residual austenite becomes heterogeneous as transformation progresses. Low carbon regions transform preferentially into martensite during cooling after isothermal bainite transformation. The partitioning of carbon was found to lag behind the bainite transformation; more time is needed as the transformation temperature is reduced. Tetragonality was not observed in either the bainitic ferrite or martensite, because the carbon content of the alloy is relatively low, and the Zener ordering temperature is below the bainite and martensite transformation temperature. No significant difference was observed in the kinetics of bainite transformation between the high sulphur and low sulphur steel.
2

Heat-Affected Zone Softening Kinetics in Dual-Phase and Martensitic Steels

Biro, Elliot 04 1900 (has links)
<p>Advanced high strength steels, such as dual-phase and martensitic steels, are increasingly being used by automakers to decrease the thickness of steel sheet used in parts without sacrificing part strength. When welded, the martensite within the dual-phase and martensitic steel microstructures tempers, reducing the heat-affected zone (HAZ) hardness compared to the base material, locally reducing strength. This process is known as HAZ softening. HAZ softening has been well studied; however, the kinetics of this process has not been quantified and the processes responsible for HAZ softening have not been examined. This thesis investigated both of these topics.</p> <p>HAZ softening was modelled using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. As the thermal profile during welding is non-isothermal, the effects of temperature and time on steel tempering kinetics could not be separated by examining post-welded properties. The effects of tempering temperature and time were separated through a series rapid isothermal tempering experiments. Hardness data from these experiments allowed the HAZ softening rate to be empirically quantified through fitting the JMAK equation. This material model was then validated by predicting HAZ softening in laser and resistance spot welds. Although the fitted JMAK constants could be used to predict post-weld HAZ hardness, they did not agree with the classic literature values associated with martensite tempering.</p> <p>To understand why the JMAK coefficients did not match those of the classic martensite tempering literature, the softening data from one of the martensitic steels was re-examined. This study revealed that the softening process was a combination of two processes: carbide nucleation and carbide coarsening. The activation energies calculated for each process matched the classic literature values. Carbide coarsening dominated during tempering, which had a non-linear relation with change in hardness. The relationship between carbide coarsening and hardness was responsible for the softening kinetics measured from the rapid tempering experiments.</p> / Doctor of Philosophy (PhD)
3

CinÃtica de transformaÃÃo de fases em novos aÃos inoxidÃveis superferrÃticos com alto teor de molibdÃnio / Phase transformation kinetics in new superferritic stainless steels with high molibdenum content

Lorena Braga Moura 04 December 2015 (has links)
Pesquisas anteriores sobre aÃos ferrÃticos experimentais com alto teor de molibdÃnio (Mo) constataram que embora o Mo seja responsÃvel por aumentar a resistÃncia à corrosÃo em meios ricos em Ãcidos naftÃnicos e em complexos de enxofre, teores acima de 5% Mo favorecem a formaÃÃo de fases deletÃrias e reduzem a tenacidade do aÃo. Para melhorar a tenacidade dessas ligas, mantendo-se a estabilidade da fase ferrÃtica, o presente trabalho adicionou nÃquel (Ni) à composiÃÃo, elevou o teor de cromo (Cr) para 25% e manteve o elevado teor de Mo. Essas novas ligas pertencem a uma famÃlia de aÃos denominados aÃos inoxidÃveis superferrÃticos, desenvolvidos inicialmente para uso em trocadores de calor e ambientes marinhos. Este trabalho faz parte de um estudo para adaptar a composiÃÃo de aÃos superferrÃticos comerciais para utilizaÃÃo em plantas petrolÃferas que refinam petrÃleos ricos em compostos de enxofre atravÃs do aumento do teor de Mo na liga. A cinÃtica de precipitaÃÃo de fases em ligas com composiÃÃes experimentais (Fe25%Cr5-7%Mo2-4%Ni) com adiÃÃo de niÃbio (Nb) e titÃnio (Ti) foi estudada para temperaturas de 400ÂC a 900ÂC em diferentes tempos de tratamento. Foi realizado o estudo termodinÃmico das ligas empregando o Thermo-Calc para determinar a temperatura de estabilidade da fase ferrÃtica e identificar as possÃveis fases intermetÃlicas precipitadas em condiÃÃes de equilÃbrio. As ligas foram envelhecidas a 400 e 475ÂC para estudar a precipitaÃÃo da fase alfa linha (&#945;â) e seus efeitos nas propriedades mecÃnicas, magnÃticas e de resistÃncia à corrosÃo. Foram realizados tratamentos isotÃrmicos de 600 a 900ÂC para estudar a cinÃtica de precipitaÃÃo das fases intermetÃlicas. As alteraÃÃes microestruturais, nas propriedades mecÃnicas e na resistÃncia à corrosÃo devido a variaÃÃo da composiÃÃo e do tratamento tÃrmico foram estudadas. Os resultados obtidos nas ligas experimentais tratadas a 400 e 475ÂC indicaram aumento na dureza e reduÃÃo da fase ferrita, acompanhada de aumento da suscetibilidade a corrosÃo por pite sendo mais crÃtico a 475ÂC, com melhor desempenho observado para a liga 5Mo4Ni. Para as amostras tratadas de 600 a 900ÂC a liga 7Mo2Ni apresentou a menor quantidade de fases deletÃrias precipitadas e menor suscetibilidade a corrosÃo por pite. Ocorreu precipitaÃÃo de austenita para as ligas contendo 4%Ni tratadas a 800ÂC e 900ÂC. A liga 7Mo4Ni apresentou pior desempenho comparada Ãs outras ligas experimentais em todas as condiÃÃes estudadas. / Previous research on experimental ferritic steel with high Mo content showed that Mo increases the resistance to naphthenic corrosion and sulfur complexes. However, Mo content above 5 wt% favored the formation of deleterious phases and reduced the toughness of the steel. To improve the toughness of these alloys and keep the ferrite phase stable, was added Ni, increased Cr content to 25% and maintained high Mo content. These new alloys belong to a family of steels known as superferritic stainless steels. They were originally developed for use in heat exchangers and marine environments. There is a current trend to use these alloys in the oil industry driving the research on the effect of the increase of Mo content on the microstructure of these steels. The kinetics of phase precipitation in experimental compositions (Fe25%Cr 5-7%Mo 2-4%Ni) with addition of Nb and Ti will be investigated for temperatures from 400  C to 900  C for different treatment times. In this first stage, Thermo-Calc software was used to determine the temperature stability of the ferritic phase and to identify possible intermetallic phases precipitated at thermodynamic equibrium. The alloys were aged at 400 and 475ÂC for study the alfa prime phase precipitation and their effects on the mechanical, magnetic and corrosion properties. Isothermal treatments were carried out 600 ÂC to 900  C to study the kinetics of precipitation of intermetallic phases. The microstructural changes on the mechanical and corrosion properties due to variation in composition and heat treatment were studied. The results obtained in the experimental alloys treated at 400 and 475ÂC indicated an increase in hardness, while wt% of ferrite had decreased, accompanied by increased susceptibility to pitting corrosion, the best performance observed for 5Mo4Ni alloy these conditions. For samples treated 600 to 900ÂC the 7Mo2Ni alloy showed the smallest amount deleterious phase precipitated and less susceptibility to pitting corrosion. Austenite phase precipitation occurred for the alloys containing 4%Ni treated at 800ÂC and 900ÂC. The 7Mo4Ni alloy showed worse performance compared to other experimental alloys in all conditions studied.
4

Evaluating the Potential of Scaling due to Calcium Compounds in Hydrometallurgical Processes

Azimi, Ghazal 04 August 2010 (has links)
A fundamental theoretical and experimental study on calcium sulphate scale formation in hydrometallurgical solutions containing various minerals was conducted. A new database for the Mixed Solvent Electrolyte (MSE) model of the OLI Systems® software was developed through fitting of existing literature data such as mean activity, heat capacity and solubility data in simple binary and ternary systems. Moreover, a number of experiments were conducted to investigate the chemistry of calcium sulphate hydrates in laterite pressure acid leach (PAL) solutions, containing Al2(SO4)3, MgSO4, NiSO4, H2SO4, and NaCl at 25–250ºC. The database developed, utilized by the MSE model, was shown to accurately predict the solubilities of all calcium sulphate hydrates (and hence, predict scaling potential) in various multicomponent hydrometallurgical solutions including neutralized zinc sulphate leach solutions, nickel sulphate–chloride solutions of the Voisey’s Bay plant, and laterite PAL solutions over a wide temperature range (25–250°C). The stability regions of CaSO4 hydrates (gypsum, hemihydrate and anhydrite) depend on solution conditions, i.e., temperature, pH and concentration of ions present. The transformation between CaSO4 hydrates is one of the common causes of scale formation. A systematic study was carried out to investigate the effect of various parameters including temperature, acidity, seeding, and presence of sulphate/chloride salts on the transformation kinetics. Based on the results obtained, a mechanism for the gypsum–anhydrite transformation below 100°C was proposed. A number of solutions for mitigating calcium sulphate scaling problems throughout the processing circuits were recommended: (1) operating autoclaves under slightly more acidic conditions (~0.3–0.5 M acid); (2) mixing recycled process solutions with seawater; and (3) mixing the recycling stream with carbonate compounds to reject calcium as calcium carbonate. Furthermore, aging process solutions, saturated with gypsum, with anhydrite seeds at moderate temperatures (~80°C) would decrease the calcium content, provided that the solution is slightly acidic.
5

Evaluating the Potential of Scaling due to Calcium Compounds in Hydrometallurgical Processes

Azimi, Ghazal 04 August 2010 (has links)
A fundamental theoretical and experimental study on calcium sulphate scale formation in hydrometallurgical solutions containing various minerals was conducted. A new database for the Mixed Solvent Electrolyte (MSE) model of the OLI Systems® software was developed through fitting of existing literature data such as mean activity, heat capacity and solubility data in simple binary and ternary systems. Moreover, a number of experiments were conducted to investigate the chemistry of calcium sulphate hydrates in laterite pressure acid leach (PAL) solutions, containing Al2(SO4)3, MgSO4, NiSO4, H2SO4, and NaCl at 25–250ºC. The database developed, utilized by the MSE model, was shown to accurately predict the solubilities of all calcium sulphate hydrates (and hence, predict scaling potential) in various multicomponent hydrometallurgical solutions including neutralized zinc sulphate leach solutions, nickel sulphate–chloride solutions of the Voisey’s Bay plant, and laterite PAL solutions over a wide temperature range (25–250°C). The stability regions of CaSO4 hydrates (gypsum, hemihydrate and anhydrite) depend on solution conditions, i.e., temperature, pH and concentration of ions present. The transformation between CaSO4 hydrates is one of the common causes of scale formation. A systematic study was carried out to investigate the effect of various parameters including temperature, acidity, seeding, and presence of sulphate/chloride salts on the transformation kinetics. Based on the results obtained, a mechanism for the gypsum–anhydrite transformation below 100°C was proposed. A number of solutions for mitigating calcium sulphate scaling problems throughout the processing circuits were recommended: (1) operating autoclaves under slightly more acidic conditions (~0.3–0.5 M acid); (2) mixing recycled process solutions with seawater; and (3) mixing the recycling stream with carbonate compounds to reject calcium as calcium carbonate. Furthermore, aging process solutions, saturated with gypsum, with anhydrite seeds at moderate temperatures (~80°C) would decrease the calcium content, provided that the solution is slightly acidic.
6

Johnson-Mehl-Avrami Kinetics of Intracellular Ice Formation in Confluent Tissue Constructs

Sumpter, Megan Louise 06 May 2004 (has links)
In an effort to minimize the harmful effects of intracellular ice formation (IIF) during cryopreservation of confluent tissues, computer simulations based on Monte Carlo methods were performed to predict the probability of IIF in confluent monolayers during various freezing procedures. To overcome the prohibitive computational costs of such simulations for large tissues, the well-known Johnson-Mehl-Avrami (JMA) model of crystallization kinetics was implemented as a continuum approximation of IIF in tissues. This model, which describes nucleation, growth, and impingement of crystals in a supercooled melt, is analogous to the process of intracellular ice formation and propagation in biological tissues. Based on the work of Weinberg and Kapral (1989), the JMA model was modified to account for finite-size effects, and was shown to predict accurately the results of freezing simulations in 1-D tissue constructs, for various propagation rates and tissue sizes. An initial analysis of IIF kinetics in 2-D tissues is also presented. The probability of IIF in 2-D liver tissue was measured experimentally during freezing of HepG2 cells cultured in monolayers, and compared to Monte Carlo simulations and predictions of the continuum model. The Avrami coefficient and exponent for IIF in HepG2 tissue were estimated to be k = 0.19 and n = 0.45.
7

Composites à matrice titane et renforts TiB élaborés par métallurgie des poudres : cinétique de transformations des phases, formation des microstructures et propriétés mécaniques / Titanium matrix composites reinforced with TiB and produced by powder metallurgy : phase transformations kinetics, microstructure formation and mechanical properties

Ropars, Ludovic 05 December 2016 (has links)
Les travaux réalisés dans cette thèse visent d’une part, à comprendre les évolutions structurales et microstructurales d’un composite à matrice titane et à renforts TiB au cours des différentes étapes d’élaboration par métallurgie des poudres et des traitements thermiques associés, et d’autre part, à établir des relations entre microstructures et propriétés mécaniques pour ce matériau. Les cinétiques de transformations des phases de la matrice et du renfort ont été caractérisées par DRX haute énergie in situ, au cours des différents traitements du cycle de fabrication. Des analyses de la microstructure par MEB, MEB EBSD et MET (EDX et EELS) complètent l’analyse par DRX. Il a été montré que les cinétiques de transformation de la matrice des composites sont fortement affectées (décalage d’environ 300°C vers les hautes températures de la température de transus ß) par le procédé de fabrication. Ce décalage a été associé à un enrichissement en éléments interstitiels dû au broyage mécanique des poudres et aux interstitiels présents dans les renforts TiB2 introduits pour former le TiB. L’étude in situ a aussi précisé la séquence de transformation du diborure de titane en borure TiB–B27 via la formation de la phase métastable TiB-Bf. Les analyses par MEB et MET ont permis d’atteindre et de discuter des évolutions morphologiques et spatiales des phases (matrice et borures) au cours des différents traitements, et de caractériser la composition chimique des borures. Une séquence de transformation du renfort est proposée. Enfin, des matériaux composites ont été élaborés et soumis à divers traitements thermomécaniques. Le lien entre les propriétés mécaniques statiques et les évolutions morphologiques des borures et de la matrice, comme de la texture des phases, a été abordé. Des traitements ont été proposés pour atteindre des propriétés optimales / The work done in this PhD thesis aims at the understanding of, on the one hand, the structural and microstructural evolutions of a TiB reinforced titanium matrix composite during the various steps and treatments of the powder metallurgy route used to produce it, and, on the other hand, the link between the microstructures and the mechanical properties for this material. The phase transformation kinetics, in the matrix and in the reinforcement, were characterised using in situ high energy XRD, during these treatments. Microstructural analysis, using SEM, SEM-EBSD and TEM (EDX and EELS) complete the XRD analysis. The matrix phase transformation kinetics were shown to be highly impacted by the processing route (a 300°C shift toward the high temperatures is found for the ß transus temperature). This shift has been linked with an increase in interstitial elements, coming from the powder mechanical alloying and from the interstitials in the TiB2 powder used to produce the TiB. The in situ study also helped in clarifying the transformation sequence of the TiB2 into TiB-27, via the formation of the metastable phase TiB-Bf. SEM and TEM analysis allowed to get access to and discuss the morphological and spatial evolutions of the phases (matrix and borides) during the various treatments and to characterise the chemical composition of the borides. A transformation sequence has been proposed. Finally, in a last part, composite materials were elaborated and submitted to defined heat treatments. The link between the static mechanical properties and the morphological and texture evolutions in the matrix and in the borides, was discussed. Some treatments were proposed to reach optimum mechanical properties
8

Estudo do efeito da deformação plástica sobre a cinética de transformação de fase de um aço 22MnB5 estampado a quente / Study of the effect of plastic deformation on the kinetics of phase transformation of 22MnB5 steel hot stamped

Olah Neto, André 10 April 2015 (has links)
Made available in DSpace on 2016-12-08T15:56:17Z (GMT). No. of bitstreams: 1 Andre Olah Neto.pdf: 11111826 bytes, checksum: 36a7c3a3c11e61f18d8a74f06d619cc0 (MD5) Previous issue date: 2015-04-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In recent decades the automobile industry has made a great effort to deal with ecological and security challenges. To do so, it was necessary to develop vehicles which are lighter, more economical and have a greater intrusion resistance when subjected to a crash. This was made possible, among other actions, by the development of advanced high strength steels, associated with the use of new manufacturing processes. Inside this approach the use of the hot stamping and the emergence of 22MnB5 boron-alloyed steel, with high hardenability, stand up. The hot stamping operation has gained great importance for enabling the manufacture of strategic components of high complexity and high mechanical resistance, associated with reasonable toughness. In order to ensure its technological evolution this process has been widely studied by numerous authors, so that the phenomenon was better understood, allowing better control as well as the quality and reliability requirements involved in the stamped components. This focus led to the development of this work, whose main objective was to study the hot stamping process, evaluating the mechanical and thermal effects. To achieve this aim an experimental apparatus was developed which allowed simulating the main thermomechanical aspects involved, such as the temperature, the conformation and the cooling. The purpose was to reproduce the conditions of the process and evaluate the influence of certain variables of the cooling speed on microstructure and on the final properties of the material, in order to study and understand some phenomena involved. This apparatus was composed of a heating furnace, an aluminum cooler, water cooled, operated at low pressure of closing and a control system, assembled on a mechanical testing 12 machine to promote the desired deformation. The experimental work was carried out in three stages. Initially, the hot plastic behavior of 22MnB5 steel was studied, evaluating the effect of temperature and strain rate on the mechanical characteristics, to determine the conditions for necking formation. In the second stage, the kinetics of phase transformation was studied, seeking to understand the effect of heating and cooling conditions on the cooling rate and on the final properties after quenching. In the last step, the plastic behavior on the kinetics of phase transformation, i.e., the effect of necking on cooling, was studied. The main objective was to show that the necking, depending on its intensity and geometry, generates the formation of a clearance between the cooler and the surface material, reducing the cooling rate to the point of affecting the mechanical properties in this region. Despite being localized, it can jeopardize the stamped component performance forming a fragile region of low mechanical strength and low toughness. It was concluded that hot plastic deformation undergone during the hot-stamping has a significant influence on the phase transformation, being necessary the proper control of process conditions so that the necking is also controlled, thus ensuring the structural homogeneity of the component and its performance. / Nas últimas décadas a indústria automobilística tem realizado um grande esforço em atender os desafios ecológicos e de segurança e para isto foi necessário desenvolver veículos mais leves, econômicos e com maior resistência à intrusão quando submetidos a um acidente. Isto foi alcançado, entre outras ações, através do desenvolvimento de aços avançados de elevada resistência mecânica, associado à utilização de novos processos de fabricação. Dentro deste enfoque se destaca dois aspectos, a utilização do processo de estampagem a quente e o surgimento do aço 22MnB5 de elevada temperabilidade ligado ao boro. A operação de estampagem a quente tem ganhado uma forte importância por possibilitar a fabricação de componentes estratégicos de elevada complexidade e elevada resistência mecânica, associada à razoável resistência ao impacto. No sentido de garantir sua evolução tecnológica este processo tem sido amplamente estudado por inúmeros autores, para que os fenômenos envolvidos pudessem ser mais bem entendidos, permitindo um melhor controle bem como o atendimento dos requisitos de qualidade e a confiabilidade envolvida nos componentes estampados. Com este enfoque desenvolveu-se este trabalho, cujo principal objetivo foi estudar o processo de estampagem a quente, avaliando os efeitos mecânicos e térmicos. Para este fim foi desenvolvido um aparato experimental, que permitiu simular os principais aspectos termomecânicas envolvidos, como a temperatura, a conformação e o resfriamento. O propósito foi o de reproduzir as condições do processo e avaliar a influência de determinadas variáveis sobre a velocidade de resfriamento, sobre a microestrutura e sobre as propriedades finais do material, no sentido de estudar e entender 10 alguns fenômenos envolvidos. Este aparato foi dotado de um forno de aquecimento, de um resfriador de alumínio refrigerado a água, operado a baixa pressão de fechamento e de um sistema de controle, montados sobre uma máquina de ensaios mecânicos para promover a deformação desejada. O trabalho experimental foi realizado em três etapas. Inicialmente foi estudado o comportamento plástico a quente do aço 22MnB5, avaliando-se o efeito da temperatura e da velocidade de deformação sobre as características mecânicas, determinando-se as condições para formação da estricção. Na segunda etapa foi estudada a cinética de transformação de fase, procurando-se entender o efeito das condições de aquecimento e do resfriamento sobre a velocidade de resfriamento e sobre as propriedades finais deste aço após têmpera. Na última etapa se relacionou o comportamento plástico sobre a cinética de transformação de fase, ou seja, o efeito da estricção sobre o resfriamento. O objetivo principal foi mostrar que a estricção, dependendo de sua intensidade e geometria, gera a formação de uma folga localizada entre a superfície do resfriador e do material, reduzindo a velocidade de resfriamento a ponto de afetar as propriedades mecânicas nesta região. Apesar de localizada esta folga pode comprometer o desempenho do componente estampado formando uma região de pouca resistência mecânica. Concluiu-se que a deformação plástica a quente sofrida durante a estampagem a quente apresenta uma significativa influência sobre a transformação de fase, sendo necessário o controle adequado das condições do processo para que a estricção também seja controlada, garantindo assim a homogeneidade estrutural do componente e o seu desempenho.
9

The laves phase embrittlement of ferritic stainless steel type aisi 441

Sello, Maitse P 12 June 2010 (has links)
The effect of Laves phase (Fe2Nb) formation on the Charpy impact toughness of the ferritic stainless steel type AISI 441 was investigated. The steel exhibits good toughness after solution treatment at 850°C, but above and below this treatment temperature the impact toughness decreases sharply. With heat treatment below 850°C the presence of the Laves phase on grain boundaries and dislocations plays a significant role in embrittlement of the steel whereas above that temperature, an increase in the grain size from grain growth plays a major role in the impact embrittlement of this alloy. The toughness results agree with the phase equilibrium calculations made using Thermo–Calc® whereby it was observed that a decrease in the Laves phase volume fraction with increasing temperature corresponds to an increase in the impact toughness of the steel. Annealing above 900°C where no Laves phase exists, grain growth is found which similarly has a very negative influence on the steel’s impact properties. Where both a large grain size as well as Laves phase is present, it appears that the grain size may be the dominant embrittlement mechanism. Both the Laves phase and grain growth, therefore, have a significant influence on the impact properties of the steel, while the Laves phase’s precipitation behaviour has also been investigated with reference to the plant’s manufacturing process, particularly the cooling rate after a solution treatment. The microstructural analysis of the grain size shows that there is a steady increase in grain size up to about 950°C, but between 950°C and 1000°C there is a sudden and rapid 60 % increase in the grain size. The TEM analysis of the sample that was annealed at 900°C shows that the Laves phase had already completely dissolved and cannot, therefore, be responsible for “unpinning of grain boundaries” at temperatures of 900°C and higher where this “sudden” increase in grain size was found. The most plausible explanation appears to be one of Nb solute drag that loses its effectiveness within this temperature range, but this probably requires some further study to fully prove this effect. During isothermal annealing within the temperature range of 600 to 850°C, the time – temperature – precipitation (TTP) diagram for the Laves phase as determined from the transformation kinetic curves, shows two classical C noses on the transformation curves. The first one occurring at the higher temperatures of about 750 to 825°C and the second one at much lower temperatures, estimated to possibly be in the range of about 650 to 675°C. The transmission electron microscopy (TEM) analyses show that there are two independent nucleation mechanisms that are occurring within these two temperature ranges. At lower temperatures of about 600°C, the pertaining nucleation mechanism is on dislocations and as the temperature is increased to above 750°C, grain boundary nucleation becomes more dominant. Also, the morphology of the particles and the mis-orientation with the matrix changes with temperature. At lower temperatures the particles are more needle-like in shape, but as the temperature is increased the shape becomes more spheroidal. The effect of the steel’s composition on the Laves phase transformation kinetics shows that by lowering the Nb content in these type 441 stainless steels, had no significance effect on the kinetics on precipitation of the Laves phase. However, a Mo addition and a larger grain size of the steel, retard the formation of the Laves phase, although the optimum values of both parameters still need further quantification. The calculation made for the transformation kinetics of the Laves phase, using the number density of nucleation sites No and the interfacial energy, as the fitting parameters in this work, demonstrated a reasonable agreement with experimental results. / Thesis (PhD)--University of Pretoria, 2010. / Materials Science and Metallurgical Engineering / unrestricted
10

Development of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718

Makiewicz, Kurt Timothy 09 August 2013 (has links)
No description available.

Page generated in 0.5326 seconds