• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tidal evolution of Pluto-Charon and the implications for the origin ofthe satellites Nix and Hydra

Cheng, Wing-hong., 鄭穎康. January 2011 (has links)
published_or_final_version / Earth Sciences / Master / Master of Philosophy
2

LIGHTCURVE CCD SPECTROPHOTOMETRY OF PLUTO.

BUIE, MARC WILLIAM. January 1984 (has links)
An observational program was carried out to investigate the spectrum of Pluto at various points on its lightcurve. Spectrophotometry of Pluto in the wavelength range of 5600 to 10500 Å was obtained on four nights covering lightcurve phases of 0.18, 0.35, 0.49, and 0.98. The four phases included minimum light (0.98) and one near maximum light (0.49). The spectra reveal variations in the adsorption depths of the methane bands at 6200, 7200, 7900, 8400, 8600, 8900, and 10000 Å. The minimum amount of adsorption was found to occur at minimum light. A model for the surface and atmosphere of Pluto was constructed in an attempt to explain the phase variation observed. The model is based upon a previous photometric two-spot model which was constructed to explain the variations in the lightcurve from 1950 to 1982. Two dark circular spots (46° and 28° in radius, both at latitude -23°, separated by 134° in longitude) were used to constrain the surface distribution of methane frost on the surface of Pluto. The reflectance properties of the two terrains were modelled with a theory by B. Hapke (J.G.R., v. 86, p. 3039, 1981) which includes the effects of multiple scattering in the surface frost. The particle size and continuum optical depth of the frost particles were allowed to vary between the dark regions inside the spot boundaries and the brighter regions surrounding the spots. The transmission of the atmosphere was calculated using the Mayer-Goody band model. The model fit to the spectrum required the presence of a frost with particle sizes on the order of 1-20 mm in order to explain the observed phase dependence of the methane bands. Using only the atmosphere and no surface frost implies a variation in column abundance of 30% within three days. From energy balance considerations this variation in column abundance is not possible. By including the absorption of methane frost on the surface a range of model solutions was obtained. This range yields an approximate limit of 5.5 m-amagats to the amount of gas that can be present and still achieve a good fit to the phase variation of the 7200 Å band. If the atmosphere is removed from the model an equally good fit to the 7200 Å band is obtained. A major problem with the model is its failure to reproduce the relative absorption band depths. The gaseous atmospheric calculation on the other hand can fit the spectrum quite well. Possible explanations include a particle size distribution within a given terrain.
3

Modeling the Interior of Haumea

January 2015 (has links)
abstract: The Kuiper Belt Object Haumea is one of the most fascinating objects in the solar system. Spectral reflectance observations reveal a surface of almost pure water ice, yet it has a mass of 4.006 × 1021 kg, measured from orbits of its moons, along with an inferred mean radius of 715 km, and these imply a mean density of around 2600 kg m−3. Thus the surface ice must be a veneer over a rocky core. This model is supported by observations of Haumea's light curve, which shows large photometric variations over an anomalously rapid 3.9154-hour rotational period. Haumea's surface composition is uniform, therefore the light curve must be due to a varying area presented to the observer, implying that Haumea has an oblong, ellipsoidal shape. If Haumea's rotation axis is normal to our line of sight, and Haumea reflects with a lunar-like scattering function, then its axis ratios are p = b/a = 0.80 (in the equatorial cross section) and q = c/a = 0.52 (in the polar cross section). In this work, I assume that Haumea is in hydrostatic equilibrium, and I model it as a two-phase ellipsoid with an ice mantle and a rocky core. I model the core assuming it has a given density in the range between 2700–3300 kg m−3 with axis ratios that are free to vary. The metric which my code uses calculates the angle between the gravity vector and the surface normal, then averages this over both the outer surface and the core-mantle boundary. When this fit angle is minimized, it allows an interpretation of the size and shape of the core, as well as the thickness of the ice mantle. Results of my calculations show that Haumea's most likely core density is 2700–2800 kg m−3, with ice thicknesses anywhere from 12–32 km over the poles and as thin as 4–18 km over the equator. / Dissertation/Thesis / Masters Thesis Astrophysics 2015
4

Plasma Interactions with Icy Bodies in the Solar System / Plasmaväxelverkan med isiga kroppar i solsystemet

Lindkvist, Jesper January 2016 (has links)
Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest to understand the fundamental processes that govern such interactions. By using numerical modelling combined with in situ observations, one can infer the internal structure of icy bodies and their plasma environments. After a broad overview of the laws governing space plasmas a more detailed part follows. This contains the method on how to model the interaction between space plasmas and icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto (a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the comet 67P/Churyumov-Gerasimenko. The time-varying magnetic field of Jupiter induces currents inside the electrically conducting moon Callisto. These create magnetic field perturbations thought to be related to conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly affected by these magnetic field perturbations. By using a hybrid plasma solver, the interaction has been modelled when including magnetic induction and agrees well with magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic field configuration allows an inflow of ions onto Callisto’s surface in the central wake. Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous atmosphere. A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced water ions get picked up by the solar wind flow, and forces the solar wind protons to deflect due to conservation of momentum. This effect of mass-loading increases steadily as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of the solar wind interaction with the coma agrees with the observations; the force acting to deflect the bulk of the solar wind plasma is greater than the force acting to slow it down. Ceres can have high outgassing of water vapour, according to observations by the Herschel Space Observatory in 2012 and 2013. There, two regions were identified as sources of water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to Ceres depends greatly on the source location of water vapour, whereas far from Ceres it does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where the solar wind is perturbed far downstream of Ceres. / Här studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga, min strävan är att förstå de grundläggande processerna som styr sådana interaktioner. Genom att använda numerisk modellering i kombination med observationer på plats vid himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer. Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko. Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar Callistos tunna atmosfär. En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kometen 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre. Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också. Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen, medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från Ceres.

Page generated in 0.0462 seconds