• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mass Loading of Space Plasmas

Lidström, Viktor January 2017 (has links)
The solar wind interaction with an icy comet is studied through a model problem. A hybrid simulation is done of a box with evenly distributed water ions and protons, where initially the water ions are stationary, and protons move with the speed of the solar wind. The purpose of the thesis is to investigate the interaction between the two species through the convective electric field, and focus is on early acceleration of pick-up ions, and deflection of the solar wind. It is relevant to the cometary case, because it enables study of the physics of this interaction, without involving other mechanisms, such as bow shock, magnetic field pile-up and draping. The species are found to exchange kinetic energy similar to a damped oscillator, where the dampening is caused by kinetic energy being transferred to the magnetic field. At early times, i.e. times smaller than the gyration time for the water ions, the solar wind does not lose much speed when it is deflected. For comparable number densities, the solar wind can be deflected more than 90° at early times, and loses more speed, and water ions are picked up faster. The total kinetic energy of the system decreases when energy builds up in the magnetic field. The nature of the energy exchange is strongly dependent on the number density ratio between water ions and protons. A density instability with behaviour similar to a plasma beam instability forms as energy in the magnetic field increases, and limits the amount of time the simulation preserves total energy, for the particular hybrid solver used. There is a discussion on the structure of the density instability, and it is compared to cometary simulations.
2

A SILICON SECONDARY PARTICLES FOR ANODES OF LITHIUM-ION BATTERIES

Wang, Miaoyu 30 October 2020 (has links)
No description available.
3

PM2.5 Particle Sensing and Fit Factor Test of a Respirator with SAW-Based Sensor

Desai, Mitali Hardik 05 1900 (has links)
PM2.5 particle sensing has been done using surface acoustic wave based sensor for two different frequencies. Due to mass loading and elasticity loading on the sensor's surface, the center frequency of the sensor shifts. The particle concentration can be tracked based on that frequency shift. The fit factor test has been conducted using higher frequency SAW sensor. The consist results has been achieved for particle sensing and fit factor test with SAW based sensor.
4

A STUDY OF MODAL TESTING MEASUREMENT ERRORS, SENSOR PLACEMENT AND MODAL COMPLEXITY ON THE PROCESS OF FINITE ELEMENT CORRELATION

PUREKAR, DHANESH MADHUKAR January 2005 (has links)
No description available.
5

Fate of polybrominated diphenyl ethers during wastewater treatment process producing reclaimed water

Siegel, Kristy 01 January 2013 (has links)
Polybrominated diphenyl ethers (PBDEs), flame retardants, have been applied to consumer goods, such as furniture, electrical devices, textiles, and appliances for decades. Due to their physico-chemical properties, PBDEs are semi-volatile and easily leach off the consumer good during aging, stress, or normal wear and tear of the good. Once airborne, they pose an environmental health threat because they can adsorb onto dust particles, soil, or other particulates that can be inhaled, ingested, or come into contact with the dermal layer. Additionally, PBDEs have a molecular structure similar to other persistent organic pollutants, such as polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and furans. They are a health threat due to their endocrine-disrupting nature by affecting thyroid functioning, fertility, and child development. The purpose of the study is to measure selected PBDEs in a wastewater treatment plant (WWTP) that produces reclaimed water, such that a mass balance can be completed, and to compare this mass balance with theoretically expected concentrations. The mass balance includes the collection of samples from wastewater, sewage sludge, and air at points within the WWTP. The PBDEs examined are BDE-28, 47, 99, 100, 153, 154, and 183. The second part of the study will compare effluent concentrations to reclaimed water concentrations in order to examine the potential exposure (if any) of using reclaimed water. Influent concentration of mean (sum7)PBDE was found to be 49,117 pg/L and effluent concentration was 4,603 pg/L, illustrating a 91% removal rate of PBDEs during the wastewater treatment plant. Sludge samples contained the highest total concentrations of PBDEs with mean (sum7)PBDE ranging from 14.0 to 41.3 ug/kg dry weight. Air samples were highest at the post-aeration (248 pg/m3 mean (sum7)PBDE) step due to the use of highly oxygenated air assisting in the release and volatilization of the PBDEs. Sludge was found to carry the largest mass loading at 14.2 lb/day (sum7)PBDE. Of the total mass loading of PBDEs from the WWTP, sludge is responsible for 86.7%, followed by reclaimed water and effluent (11.7% and 1.6%, respectively). The mass loading from air was negligible with less than 0.01% contribution to the total mass loading. Whereas reclaimed water overall had higher PBDE congener mean concentrations than the effluent, the independent samples t-test found no statistically significant differences between the two groups. The results of this study can be used to improve the wastewater treatment process to reduce the impact of PBDEs being released into the environment by WWTPs, and to educate the public on utilizing reclaimed water in a safe and healthy manner.
6

Solid particle transport behavior and the effect of aerosol mass loading on performance of a slit virtual impactor

Seshadri, Satyanarayanan 30 September 2004 (has links)
Transport of solid particles in a slit virtual impactor has been analyzed using visualization techniques. Particle trajectories were observed using laser-induced fluorescence of monodisperse particles seeded in the virtual impactor flow. It was observed from these trajectories that for smaller inertia particles essentially followed the flow streamlines, whereas higher inertia particles tend to deflect from their initial streamlines. These transport characteristics were used to determine particle collection efficiency curves, and the percentage of defect particle transmission, particles transmitted to the major flow that are well beyond the experimentally determined 50% cutoff. Defect percentages were found to be in good agreement with those based on a local stokes number approach, an analytical model using a converging flow velocity profile. It was hypothesized that these defects occur by virtue of larger particles passing through the near wall flow region and consequently transported to the major flow. The trajectories of such defect occurrences clearly show that these particles originated in the near wall region. Performance at higher mass loadings was evaluated using a background dust matrix generated by a turntable aerosol generator. At high mass loadings, clogging of the slit led to the deterioration of the impactor's performance. The time taken to clog the silt was estimated by modeling the slit edge as a single filter fiber of rectangular cross section with the primary mechanism of filtration being interception and was found to be in good agreement with the experimental data. Elimination of defect transmission and clogging would be possible by the provision of a sheath airflow, which ensures that the near wall regions are free of particles.
7

Solid particle transport behavior and the effect of aerosol mass loading on performance of a slit virtual impactor

Seshadri, Satyanarayanan 30 September 2004 (has links)
Transport of solid particles in a slit virtual impactor has been analyzed using visualization techniques. Particle trajectories were observed using laser-induced fluorescence of monodisperse particles seeded in the virtual impactor flow. It was observed from these trajectories that for smaller inertia particles essentially followed the flow streamlines, whereas higher inertia particles tend to deflect from their initial streamlines. These transport characteristics were used to determine particle collection efficiency curves, and the percentage of defect particle transmission, particles transmitted to the major flow that are well beyond the experimentally determined 50% cutoff. Defect percentages were found to be in good agreement with those based on a local stokes number approach, an analytical model using a converging flow velocity profile. It was hypothesized that these defects occur by virtue of larger particles passing through the near wall flow region and consequently transported to the major flow. The trajectories of such defect occurrences clearly show that these particles originated in the near wall region. Performance at higher mass loadings was evaluated using a background dust matrix generated by a turntable aerosol generator. At high mass loadings, clogging of the slit led to the deterioration of the impactor's performance. The time taken to clog the silt was estimated by modeling the slit edge as a single filter fiber of rectangular cross section with the primary mechanism of filtration being interception and was found to be in good agreement with the experimental data. Elimination of defect transmission and clogging would be possible by the provision of a sheath airflow, which ensures that the near wall regions are free of particles.
8

Plasma Interactions with Icy Bodies in the Solar System / Plasmaväxelverkan med isiga kroppar i solsystemet

Lindkvist, Jesper January 2016 (has links)
Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest to understand the fundamental processes that govern such interactions. By using numerical modelling combined with in situ observations, one can infer the internal structure of icy bodies and their plasma environments. After a broad overview of the laws governing space plasmas a more detailed part follows. This contains the method on how to model the interaction between space plasmas and icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto (a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the comet 67P/Churyumov-Gerasimenko. The time-varying magnetic field of Jupiter induces currents inside the electrically conducting moon Callisto. These create magnetic field perturbations thought to be related to conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly affected by these magnetic field perturbations. By using a hybrid plasma solver, the interaction has been modelled when including magnetic induction and agrees well with magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic field configuration allows an inflow of ions onto Callisto’s surface in the central wake. Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous atmosphere. A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced water ions get picked up by the solar wind flow, and forces the solar wind protons to deflect due to conservation of momentum. This effect of mass-loading increases steadily as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of the solar wind interaction with the coma agrees with the observations; the force acting to deflect the bulk of the solar wind plasma is greater than the force acting to slow it down. Ceres can have high outgassing of water vapour, according to observations by the Herschel Space Observatory in 2012 and 2013. There, two regions were identified as sources of water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to Ceres depends greatly on the source location of water vapour, whereas far from Ceres it does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where the solar wind is perturbed far downstream of Ceres. / Här studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga, min strävan är att förstå de grundläggande processerna som styr sådana interaktioner. Genom att använda numerisk modellering i kombination med observationer på plats vid himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer. Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko. Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar Callistos tunna atmosfär. En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kometen 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre. Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också. Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen, medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från Ceres.
9

Performance evaluation of pilot-scale constructed wetlands for the treatment of domestic wastewater in Addis Ababa, Ethiopia

Belachew, Mengesha Dagne 06 1900 (has links)
An experimental study was carried out to evaluate the performance of pilot scale constructed wetlands for the treatment of domestic wastewater in Addis Ababa, Ethiopia. Three parallel sets of constructed wetlands; consisting of one Horizontal Flow (HF), one Vertical Flow (VF) and one hybrid of HF and VFconstructed in series were built in Addis Ababa. The wetland systems had identical wetland fill media and macrophytes but with different wastewater flow types. The total surface area of the wetland systems was 72 m2 /24 m2 for each/ and designed to treat 3.15 m3 of domestic wastewater per day. Triplicate grab samples were taken from the influent and effluents every 15 days for one year and analyzed within 24 hours. Temperature, pH, DO and EC were measured onsite and the nutrient content of macrophytes was determined twice during the monitoring period. During the first 12 months monitoring period, the average removal efficiencies of the HFCW, VFCW and hybrid CW were: BOD (89.1%, 92.2% and 93.4%), COD (80.6%, 82.1% and 84.0%), TSS (89.1, 83.8% and 84.7%), NH4 + (58.6%, 66.2% and 65.4%), NO3 - (64.0%, 71.5% and 73.5%), TN (49.1%, 54.9% and 58.7%), PO4 3- (45.4%, 50.3% and 48.4%), TP (58.0%, 51.7% and 54.4%) and FC (98.6%, 96.6% and 96.5%), respectively. The hybrid system showed relatively higher removal efficiencies for most pollutants. Again, the wetland systems showed relatively higher percent reduction during the dry seasons /from Dec - May/. The areal removal rate constants of BOD5, TN, PO4 3- and TP were higher than the literature values while the values of COD and TSS were lower compared to the literature values. Concerning the nutrient content of the wetland plant, the average TN contents of the below-ground and above-ground plant part were 1.56% and 2.27% for the HFCW, 1.75% and 2.74% for the VFCW and 1.80% and 2.63% for the hybrid system, respectively. Meanwhile, the average TP contents of the belowground and above-ground plant part were 0.139% and 0.064% for the HFCW, 0.167% and 0.067% for the VFCW and 0.115% and 0.065% for the hybrid systems, respectively. In general, the results showed that properly designed constructed wetland systems could be used as effective wastewater treatment method in Ethiopia. / Environmental Sciences / Ph. D. (Environmental Sciences)

Page generated in 0.0758 seconds