• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 340
  • 172
  • 36
  • 35
  • 21
  • 12
  • 7
  • 7
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 797
  • 249
  • 217
  • 176
  • 104
  • 92
  • 84
  • 69
  • 66
  • 54
  • 51
  • 48
  • 46
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Examining Pathways for Water Loss from Mountain Lake, Giles County, Virginia

Joyce, William Lucas 13 July 2012 (has links)
Located in Giles County, Virginia, Mountain Lake has a documented history of dramatic water level fluctuations. Previous water balance studies have documented that the main cause of water loss is outflow to groundwater. However, the flow paths of water exiting the lake are unknown. This study applied hydrologic, geophysical, and dye tracer methods to examine the pathways for water loss and the possible geologic controls on these flow paths. Continuous lake level monitoring data show seasonal trends of draining and filling over a three year period. Electrical resistivity profiles suggest the presence of a large low-resistivity zone beneath the northern end of the lake. A dye tracer study yielded limited positive results, but dye detection in one stream and within the lake suggest complex flow dynamics. The most likely reasons for the lack of dye recovery include dilution of the dye during lake recovery, seepage of water below monitoring site locations, or formation of a temporary seal in the depressions created by influx of sediment during periods of lake bed exposure. / Master of Science
232

Développement des sondes fluorescentes pour la détection de l’ADN quadruplex / Development of fluorescent probes for the detection of quadruplex DNA

Xie, Xiao 28 January 2015 (has links)
Les acides nucléiques simple-Brins contenant des répétitions de guanines peuvent former des structures secondaires non canoniques dites G-Quadruplexes, composées de plusieurs couches de quartets de guanine. Malgré de nombreuses études in vivo, les preuves de présence de structures quadruplexes in vivo restent indirectes. L’objectif de ce travail était la recherche de sondes fluorescentes capables de signaler la présence d'ADN quadruplex et détecter sa structure (topologie).Deux séries de sondes fluorescentes ont été envisagées et préparées : les colorants styryles (majoritairement distyryles) et les dérivés PDC-Coumarines. La conception de ces deux séries est basée sur l’échafaudage bisquinolinium pyrido¬dicarboxamide (PDC-360A), un ligand sélectif ayant une bonne affinité vis-À-Vis des structures d’ADN quadruplexes, mais qui est non-Fluorescent. En s’inspirant de cette molécule et du motif styryle, connu pour ses propriétés spectroscopiques, nous avons préparé une librairie de colorants distyryles. Une deuxième série, les dérivés PDC-Coumarine, est synthétisée afin d’introduire la propriété fluorescente de la coumarine dans le PDC par une liaison covalente.Les propriétés de colorant de ces deux librairies (65 composés) ont été étudiées en présence de nombreuses structures d’ADN (quadruplex et duplex) en utilisant un criblage par fluorescence sur microplaques et des méthodes de titration. Nos résultats montrent que certains colorants synthétisés possèdent une haute réponse fluorimétrique (facteur d’augmentation de fluorescence de 200 à 600) vis-À-Vis de différentes structures d’ADN et d’ARN quadruplex, ayant une très faible réponse fluorimétrique vis-À-Vis de l’ADN duplex. Cela permet de marquer sélectivement l’ADN quadruplex dans la solution ou sur les gels d’électrophorèse. Ces résultats représentent une première étape vers l’utilisation de ces sondes dans un contexte biologique, par exemple dans l’imagerie de fluorescence. / Single-Stranded nucleic acids containing guanine repeats can form non-Canonical secondary structures called G-Quadruplexes. These structures are composed of several guanine quartets, maintained by hydrogen bonds and metal cations (K+ or Na+) coordinated between G-Quartets. In spite of being well-Studied in vitro, the evidence for the presence of quadruplex DNA structures in vivo remains mainly indirect. The objective of this work was research of fluorescent probes that can signal the presence of quadruplex DNA and detect its structure (topology).Two series of fluorescent probes were considered and prepared: styryls dyes (mostly distyryls) and PDC-Coumarin derivatives. The design of these two series is based on the molecular scaffold of bisquinolinium pyridodicarboxamide (PDC-360A), a selective ligand with good affinity for quadruplex DNA structures but which is not fluorescent. Inspired by this molecule and the styryl motif, which is known for its spectroscopic properties, we considered a library of distyryles dyes. A second series, the PDC-Coumarin derivatives, was developed to introduce the fluorescence property of coumarin in the PDC by a covalent link. The properties of dyes of these two libraries (65 compounds) were studied in the presence of a number of DNA structures (quadruplex and duplex) by a fluorescent screening using microplate and titration methods. Our results show that some of synthesized dyes display high fluorescence response (i.e. fluorescence increase factor from 200 to 600) for different quadruplex DNA and RNA structures, while having a very low fluorimetric response for duplex DNA. This allows a selective visualization of quadruplex DNA in solution or in electrophoresis gel. These results represent the first steps towards the use of these probes in a biological context, for example in fluorescence imaging
233

Synthesis of Organic Chromophores for Dye Sensitized Solar Cells.

Hagberg, Daniel January 2009 (has links)
This thesis deals with development and synthesis of organic chromophores for dye sensitized solar cells. The chromophores are divided into three components; donor, linker and acceptor. The development of efficient organic chromophores for dye sensitized solar cells starts off with one new organic chromophore, D5. This chromophore consists of a triphenylamine moiety as an electron donor, a conjugated linker with a thiophene moiety and cyanoacrylic acid as an electron acceptor and anchoring group. Alternating the donor, linker or acceptor moieties independently, would give us the tool to tune the HOMO and LUMO energy levels of the chromophores. The following parts of this thesis regard this development strategy. The contributions to the HOMO and LUMO energy levels were investigated when alternating the linker moiety. Unexpected effects of the solar cell performances when increasing the linker length were revealed, however. In addition, the effect of an alternative acceptor group, rhodanine-3-acetic acid, in combination with different linker lengths was investigated. The HOMO and LUMO energy level tuning was once again successful. Electron recombination from the semiconductor to the electrolyte is probably the cause of the poor efficiencies obtained for this series of dyes. Finally, the development of functionalized triphenylamine based donors and the contributions from different substituents to the HOMO and LUMO energy levels and as insulating layers were investigated. This strategy has so far been the most successful in terms of reaching high efficiencies in the solar cell. A top overall efficiency of 7.79 % was achieved. / QC 20100716
234

Studies On The Effect Of Closed Loop Controls On The Stability Of High Repetition Rate Copper Vapour Laser Pumped Dye Laser

Saxena, Piyush 10 1900 (has links)
Copper vapour laser (CVL) pumped high repetition rate narrow bandwidth dye laser is an important source of tunable radiation. It finds numerous applications in spectroscopic investigations and selective material processing like atomic vapour laser isotope separation (AVLIS). Being wavelength selective in these applications stability of the output wavelength and bandwidth are extremely important. The stability of these parameters depend upon the refractive index fluctuation of the dye medium, due to pump beam induced temperature gradients, dye solution flow, and mechanical stability of optical components. Precise measurement of wavelength and bandwidth of a dye laser and control over parameters governing the variations are important for any stable dye laser system. In this thesis, details of investigations carried out on a Rhodamine 6G dye laser for obtaining stable wavelength and output power are presented. Parameters that affect the stability were identified, monitored and put on close loop control to achieve the desired stability. Pump beam i.e. CVL optical power, dye flow rate and dye solution temperature are mainly these parameters. CVL power is mainly a function of input electrical power and pressure of the buffer gas inside the tube. To monitor and regulate these parameters, different sensors and actuators were selected and interfaced with a master slave topology based data acquisition and control system. The DAQ and control system is designed around a micro controller card based on advanced CPU P80552 and has on chip 8 channel 10 bit multiplexed analog input, 16 TTL digital inputs and 16 digital outputs. It works as slave and PC as master. Following closed loops were designed and incorporated to maintain a stable output: a. Average output of CVL was maintained constant by regulating the electric input power through closed loop control. b. The buffer gas pressure was monitored with a semiconductor pressure sensor and was regulated using pulse width modulation. c. Temperature of the dye solution was monitored with PT100 and was controlled using proportional controller. d. Flow rate of dye solution was controlled using a variable frequency drive (VFD) for the dye circulation pump. e. The dye laser wavelength was monitored by using a high resolution spectrograph and pixel position of the peak from CCD image obtained from spectrograph is used for feedback correction using a pico motor. In the present work with application of the above-mentioned input power and pressure loops, a stable output of CVL, is achieved. Variations in power and pulse width of CVL are got limited to within 2%, from 10% when CVL system was working unregulated. This control system does the line regulations and corrects the input electrical power if variations in discharge current occur due to pressure variation. Every dye cell has limits on flow rate because of its geometry. With flow and temperature control dye cell was characterized to work with lower linewidth. VFD (variable frequency drive) is used for flow regulation. Finally active control on set wavelength was also achieved with resolution of 0.01nm accuracy. Measurement of wavelength was done with 0.3 m, 0.054 nm resolution spectrograph. Closed loop pico motor with 30 nm per step linear resolution was used for wavelength control. The thesis is organized in four chapters. First chapter presents a brief introduction to high repetition rate CVL pumped dye laser, operation of a CVL and parameters affecting the dye laser stability and their control schemes. Literature survey in this chapter is focused on different control mechanisms used with such lasers. Second chapter describes the laser system and interfacing of data acquisition system used for experimental setup. Closed loop controls for different parameters are described in this chapter. It also describes the software algorithms developed for this work. Third chapter presents experimental results and analysis with discussion on performance of the control loops. Finally the conclusion is given and few suggestions are made for further work.
235

Anglies nanovamzdelių kompozitų su polimetininio dažo chromoforu elektroninės sandaros teorinis tyrimas / Theoretical investigation of electronic structure of carbon nanotube composites with a polymethine dye chromophore

Jurkevičiūtė, Jolanta 16 August 2007 (has links)
Kvantinės fizikos Hartre – Foko – Ruthano metodu atlikti teoriniai elektrinio krūvio tankio pasiskirstymo ant atomų skaičiavimai, nustatyta anglies nanovamzdelių, polimetininio dažo katijonų elektroninės sandaros priklausomybė nuo jų geometrinių parametrų ir nuo polimetininio dažo katijono padėties nanovamzdelyje. Nustatyta anglies nanovamzdelio kompozitų spektro kitimo priklausomybė. / Hartre – Fock – Ruthaan method of quantum mechanics, realized in GAMESS operating system, was applied in this research. Theoretical calculations of the distribution of electric charge density over atoms was carried out, the dependence of carbon nanotubes, polymethyne dye cations electron composition on geometrical parameters and the position of polymethyne dye cation (C11H19 N2+) in a tube . The analysis of energy levels of research subjects was carried out.
236

Engineering the phase behaviour of high performance inkjet colorants

Sintyureva, Marina January 2011 (has links)
Dyes for inkjet printing are typically of the chromonic type. Chromonic mesophases have gained considerable attention as a well-defined group of lyotropic mesogens with different properties from conventional amphiphiles. While extensive research has been dedicated to the field of surfactant liquid crystals, structural and aggregation studies of chromonics have only emerged as a topic of interest within the last few years. The liquid crystalline structures in aqueous solutions of commercial Cu - phthalocyanine and black dyes have been examined using a combination of optical microscopy, UV-vis spectroscopy, nuclear magnetic resonance, wide- and small-angle X-ray diffraction and electronic paramagnetic resonance with a view to examining the phase behaviour of the chromonic mesophases formed over a broad range of concentrations and temperatures. These studies were performed in order to resolve outstanding problems concerning structural properties of these systems. Optical microscopy allowed us to identify the liquid crystalline phases and to construct the phase diagram. The observations show that both of these dyes form nematic mesophase above 15% wt / wt% dye. The small-angle diffraction data confirmed that the nematic phase for the black dye is maintained throughout the 16-25% composition range. A further increase in concentration leads to the formation of the hexagonal phase. The Cu – phthalocyanine dye also formed a nematic phase at low concentrations, with the aggregates undergoing a phase transition to an orientationally ordered chromonic liquid crystal phase at high dye concentration. These studies showed that this ordered phase possessed hexagonal symmetry. The wide-angle X-ray results demonstrated that aggregation involved π-π stacking of the molecules into columns. An additional reflection at ca. 6.8Å was observed for the black dye, which is believed to arise from “head – to – tail” packing of the molecules within the aggregates (a similar phenomenon observed in other azo dyes, e.g. Edicol Sunset Yellow).The densities of both dyes were measured over the studied range of concentrations. This enabled us to calculate the parameters of the aggregates within the hexagonal mesophase. A comparison between the area of the molecule and the cross-section of the aggregates showed that the aggregates of both dyes were the unimolecular stacks.
237

Soft Society

Tingvall, Josefin January 2017 (has links)
Illustrated exam paper for Josefin Tingvalls project Soft Society. Which is about investigating through cloth and textile our urban surrounding. The core question ; if I go out in an urban area and use textile as a recordmaterial, what traces and stories will I bring back? By looking at textileas a matter, craft and as a philosophical starting point in urban areas, what can it tell about our surrounding and our society? In the three mainchapters of the paper, Tingvall reflects upon important themes such as wandering and spectating, also exhibiting of process based craft, textilein urban areas and matter-based dyes and their relation to us. / Soft society
238

Plain Print : a surface pattern collection screen printed with natural dye

Hüls, Lisa January 2021 (has links)
The interest for natural dye has increased together with the concern in sustainability and environmental awareness within the textile industry. Natural dye is one of the oldest techniques when it comes to textile production, but when synthetic dyestuffs were discovered, the usage of the technique decreased. Today, the technique is slowly coming back together with the awareness in sustainability. However, regarding surface patterns, the expression is quite limited, and patterns are created by dyeing techniques, muted colors and nature as an obvious inspiration. This degree work explores natural dye print by designing a screen printed surface pattern collection, and the project advocates for and is an addition to the field of natural dye print. The methods used were drawing, digital sketching and screen printing. The methods of designing were done through practical workshops, both for sketching patterns and to explore techniques within natural dye print. The female body is a design theme in the work and the intention is simply to portray the body as it is. The motive has not been chosen to provoke, to address a political issue or to evoke discussion. The result is three surface patterns printed with different printing techniques on different fibers. A significant part of the result is the reference library containing all the printed samples and can be used for further research within the field. Choice of fabric and scale of design was done with fashion fabric in mind, however, to focus on the design and technique the designs are not presented on any kind of product. Tests were done to try out the light fastness of the different colorants on different fibers. This project has expanded the field of natural dye print by adding a screen printed surface pattern collection with thematic patterns and an expression that does not reveal the use of natural dye. The project also resulted in a steppingstone for further work within the field.
239

Nanocrystalline Titania Based Dye Sensitized Solar Cells - Effect Of Electrodes And Electrolyte On The Performance

Mathew, Ambily 07 1900 (has links) (PDF)
Dye-sensitized solar cells (DSC) have attracted considerable scientific and industrial interest during the past decade as an economically feasible alternative to conventional photovoltaic devices. DSCs have the potential to be as efficient as silicon solar cells, but at a fraction of the cost of silicon solar cells. The unique advantage of DSC compared to conventional solar cells is that the light absorption, electron transport and hole transport are handled by different components which reduces the chance of recombination. In the present work, to facilitate DSC with good energy conversion efficiency, its performance have been evaluated as a function of titania layer morphology, redox couple concentration and the catalytic layer on the counter electrode. The results that are obtained in the present investigations have been organized as follows Chapter 1 gives a brief exposure to DSC technology. Special emphasize has been on the structure and individual components of the DSC. Chapter 2 describes various experimental techniques that are employed to fabricate and characterize DSCs under study. Chapter 3 presents a systematic study of the characteristics of DSC made of three different types of electrodes namely: TiO2 nanotubes (TNT) which have excellent electron transport properties, TiO2 microspheres (TMS) which possess high surface area and light scattering ability and TiO2 nano particles (TNP) possessing high surface area. The electronic, morphological, optical and surface properties of individual electrodes are studied. The highest efficiency of 8.03% is obtained for DSCs prepared with TMS electrodes. A higher value of effective diffusion coefficient (Deff) and diffusion length (Ln) of electrons as obtained by electrochemical impedance spectroscopy (EIS) analysis confirms a high charge collection efficiency in microsphere based cell. Chapter 4 gives a detailed study of DSCs fabricated with a tri-layer photo anode with TNTs as light scattering layer. The tri-layer structure has given an enhanced efficiency of 7.15% which is 16% higher than TNP based cell and 40% higher than TNT based cells. Chapter 5 deals with the investigations on the effect of concentration of redox couple on the photovoltaic properties of DSC for different ratios of [I2] to [LiI] (1:2, 1:5 and 1:10) with five viii concentrations of I2 namely 0.01 M, 0.03 M, 0.05 M, 0.08 M and 0.1M in acetonitrile. It is found that the open circuit potential (Voc) decreases with increase in the ratio of redox couple whereas short circuit current density (Jsc) and fill factor (FF) increase. The reason for the decline in Voc is the higher recombination between electrons in the conduction band of TiO2 and the I3- ions present in the electrolyte, induced by the absorptive Li+ ions. In addition using EIS it is found that the τ improves with the increase in [LiI] at a particular [I2], whereas at a fixed [I2]/ [LiI] ratio the increase in [I2] is found to reduce the τ and Deff due to the enhanced recombination. Chapter 6 describes the application of carbon based counter electrode (CE) materials for DSCs. Two counter electrode materials have been investigated namely (1) Multiwalled carbon nanotubes (MWCNT) synthesized by pyrolysis method and (2) Platinum decorated multiwalled carbon nanotubes (Pt/MWCNT) prepared by chemical reduction of platinum precursors. Using Pt/MWCNT composite electrode the DSC achieved an energy conversion efficiency of 6.5 %. From the analysis on symmetric cells, it is found that electro catalytic activity of Pt/MWCNT CE is similar to that of platinum CE, though the platinum loading is very less for the former. This is attributed to the effective utilization of catalyst owing to high surface area arising from the increased surface roughness. Chapter 7 discusses the application of titanium foil in place of glass substrate for the photo anode. The titanium foil offers fabrication of flexible DSC. The performance of DSC with TMS layers and aligned titania nanotube arrays (TNA) prepared by anodization method is studied. Compared to TMS based cell, TNA has given a better efficiency at a lower thickness. Chapter 8 presents the scheme used to seal DSCs and its stability analysis. We have employed the usual hot melt sealing for edge whereas hole sealing is carried out with tooth pick and a UV curable adhesive. The degradation in efficiency is found to be 20% for low efficiency cells whereas, for high efficiency cells it is found to be 45% after 45 days. The leakage of highly volatile acetonitrile through the edge and hole is found to be responsible for the reduction in the performance of the device. Hence a high temperature sealing method is proposed to fabricate stable cells. Chapter 9 gives summary and conclusions of the present work
240

Structure-property relationships of dyes as applied to dye-sensitized solar cells

Gong, Yun January 2018 (has links)
This work investigates the correlation of structural and photovoltaic properties of dyes used in dye-sensitized solar cells. Experimental methods, including ultraviolet-visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy are employed to study optical and electrochemical properties of dye molecules. Computational methods, including density functional theory and time-dependent density functional theory, are used to validate and predict the optical and electronic properties of dye molecules, in their isolated state and once embedded into a working electrode device environment that comprises a dye...TiO2 interface. The results chapters begin with the presentation of a series of quinodimethene dyes that are experimentally validated for their photovoltaic application, and associated computational studies reveal that an inner structural factor - a phenyl ring rotation occurring during the optical excitation process - leads to the competitive photovoltaic device performance of these dyes. Carbazole-based dyes are then systematically studied by computation, especially considering charge transfer paths and binding modes of these dyes on a titania surface. The theoretical models for the basic building block of this chemical family of dyes, known as MK-44, successfully support and explain structural discoveries from X-ray diffraction and reflectometry that impact of their function. A benzothiadiazole-based dye, RK-1, is then systematically studied by both experimental and computational methods, and the results show that the π-bridge composed of thiophene, benzothiadiazole and benzene rings leads to excellent charge separation; and the rotation of these rings during the optical excitation process may well be consistent with the fluorescence spectrum. Finally, the well-known ruthenium-based dyes are theoretically studied to determine the properties of different ligands connected to the metal core of the complex. Conformations with different NCS ligands are calculated in terms of energy and explain well the corresponding results from X-ray diffraction. Acid-base properties of carboxyl groups connected to pyridine ligands in N3 and N749 are theoretically calculated based on thermodynamics and density functional theory. Implicit and explicit models are both adopted to predict these acid dissociative constant values, which are generally in a good agreement with the reported experimental data. The thesis concludes with conclusions and a future outlook.

Page generated in 0.4975 seconds